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Hello! 

1. You Rock!
Thanks for checking out the Welch Labs Imaginary Numbers Are Real Workbook. Here you'll find everything you need to get the 
most out of my Imaginary Numbers are Real YouTube series. For each video in the series, you'll find a workbook section complete 
with the text and key figures from the video, more in-depth features covering interesting areas, and most importantly, exercises. 

2. About Them Exercises. 
As the quote above says much better than I can, the exercises we're given in math class are all too often terrible. At some point you've 
likely been assigned the kinds of fence-painting exercises where you're asked to do the same type of problem over and over and over 
with minor tweaks to the numbers. I hate this stuff. It's uninspiring and a bad use of your brain. That said, I promise I have done my 
very best to avoid this type of problem here. Each exercise is here for a reason. No fence painting.

Of course, this is only half the equation. Like anything else, to get real value out, you must put real work in. And if you do, I promise 
it's worth it. Imaginary numbers are rich and beautiful, and their history is fascinating. Really understanding this stuff will give you 
tremendous perspective on the power and beauty of modern mathematics and science. The exercises for each section are divided into 4 
parts:

3. About Them Solutions.
I'm a firm believer in quick feedback when learning new concepts. This is why you'll find answers to the exercises in the back of the 
book. I encourage you to check your work as you go. Of course, this doesn't mean you should flip to the back of the book as soon as the 
going gets tough - a little suffering and uncertainty is good.

Enjoy!
@stephencwelch

"Imagine you had an art class in which they taught you how to paint a fence, but never 
showed you the great masters. Of course, you would say; ‘I hate art.’ You were bad at 

painting the fence but you wouldn’t know what else there is to art. Unfortunately, that is 
exactly what happens with mathematics. What we study at school is a tiny little part of 
mathematics. I want people to discover the magic world of mathematics, almost like a 

parallel universe, that most of us aren’t aware even exists."

- Edward Frenkel

© Stephen Welch, 2016

Exercises Description

Discussion Designed to stimulate, you guessed it, 
discussion! No wrong or right answers. 

Drill

 Imaginary Numbers can be tough, and missing 
key concepts can really make this stuff way less 

fun - the Drills are designed to ensure your grasp 
of the key concepts is sound.

Critical Thinking

The Critical Thinking exercises are where things 
get good - these exercises are specifically 
designed to question your mathematical 

assumptions and grow your skills.

Challenge  These questions are like, hard. 
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Let’s take the function

If we graph our function, we obtain the friendly 
parabola of Figure 1. Now let’s say we want to figure out 
where the equation equals zero - we want to find the roots. 
On our plot this should be where the function crosses the 
x-axis. 

As we can see, our parabola actually never crosses the 
x-axis, so according to our plot, there are no solutions to 
the equation x2+1 = 0.

But there’s a small problem. A little over 200 years ago 
a smart guy named Gauss proved1 that every polynomial 
equation of degree n has exactly n roots. Our polynomial 
has a highest power, or degree, of two, so we should have 
two roots. And Gauss’ discovery is not just some random 
rule, today we call it the Fundamental Theorem of Algebra.

So our plot seems to disagree with something so 
important it’s called the Fundamental Theorem of Algebra, 
which might be a problem. What Gauss is telling us here is 
that there are two perfectly good values of x that we could 
plug into our function, and get zero out. Where could these 
two missing roots be?

The short answer here is that we don’t have enough 
numbers. We typically think of numbers existing on a one 
dimensional continuum - the number line. All our friends 
are here: zero, one, negative numbers, fractions, even 
irrational numbers like √—2 show up.

But this system is incomplete. And our missing numbers 
are not just further left or right, they live in a whole 
new dimension. Algebraically, this new dimension has 
everything to do with a problem that was mathematically 

1 Mostly, the full proof took a little longer

considered impossible for over two thousand years: the 
square root of negative one.2 

When we include this missing dimension in our 
analysis - our parabola ends up looking more like Figure 2, 
and needless to say, is a bit more interesting. 

Now that our input numbers are in their full two 
dimensional form, we see how our function x2+1 really 
behaves. And we can now see that our function does cross 
the x-axis!3 We were just looking in the wrong dimension.

So, why is this extra dimension that numbers possess 
not common knowledge? Part of this reason is that it has 
been given a terrible, terrible name. A name that suggest 
that these numbers aren’t ever real! 4

In fact, Gauss himself had something to say about this 
naming convention:

So yes, this missing dimension is comprised of numbers 
that have been given ridiculous name imaginary. Gauss 
proposed these numbers should instead be given the name 

2 More on this later
3 If you’re paying attention, you should be thinking “what the heck Stephen, 
you said the graph would cross the axis twice (there would be two solutions), 
and the graph in figure 2 crosses like a million times!” Great point Greg! The 
reason for this is we’ve only plotted the real part of the graph to keep things 
simple (ish) – we’ll cover the complete solution (which does have exactly 2 
answers) in Part 13. Get excited. 
4  J

Imaginary Numbers Are Real 
Part 1: Introduction

(1)
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y = f(x)

Figure 1 | Graph of f(x) = x2+1.

a b

c d

Figure 2 | Graph of f(x) = x2+1 where x includes imaginary numbers. Panels 
a-d show "pulling" the function out of the page.

“That this subject [imaginary numbers] has 
hitherto been surrounded by mysterious obscurity, 
is to be attributed largely to an ill adapted notation. 
If, for example, +1, -1, and the square root of -1 
had been called direct, inverse and lateral units, 
instead of positive, negative and imaginary (or even 
impossible), such an obscurity would have been out 
of the question.” 

- Carl Friedrich Gauss (1777-1855)
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lateral1 - so from here on, let’s let lateral mean imaginary. 
To get a better handle on imaginary/lateral numbers 

and really understand what’s going on in Figure 2, let’s 
spend a little time thinking about numbers. 

Early humans really only had use for the natural 
numbers (1, 2, 3…). This makes sense because of how 
numbers were used – as a tool for counting things. So to 
early humans, the number line would have just been a 
series of dots. 

As civilizations advanced, people needed answers to 
more sophisticated math questions – like when to plant 
seeds, how to divide land, and how to keep track of financial 
transactions. The natural numbers just weren’t cutting it 
anymore, so the Egyptians innovated and developed a new, 
high tech solution: fractions. 

Fractions filled in the gaps in our number line, and were 

1  We’ll explain why Gauss preferred the name imaginary in part six.

basically cutting edge technology for a couple thousand 
years. 

The next big innovations to hit the number line were 
the number zero and negative numbers, but it took some 
time2 to get everyone on board. Since it’s not obvious3 what 
these numbers mean or how they fit into the real world, 

2  Like a lot of time. Like thousands of years time. 
3  Remember 3rd grade?

Figure 3 | From here on, lateral = imaginary. Gauss preferred the term lateral to 
imaginary, we'll see exactly why in Part 6. 

Civilization Relevant 
Time

Example 
Numerals Fractions Zero As 

Placeholder Zero Negatives Imaginary
Numbers Number Line

Prehistory <3000 BC 1 2 3

Ancient Egypt 1740BC 1 2 3

Babylonia 300BC 1 2 3

Olmec 700-400BC
1 2 3

Greek 500BC-
100AD 1 2 3

China 200BC-
200AD 1 2 3-1-2-3

Roman 27 BC-
476AD 1 2 3

Cambodia 700AD 1 2 3

India + Persia 600-
1000AD 1 2 3-1-2-3 0

Medieval Europe 500-
1400AD 1 2 3

Renaissance 
Europe

1300-
1700AD 1, 2, 3 1 2 3-1-2-3 0

Modern Era >1700 AD 1, 2, 3 1-1

i

-i

Table 1 | A brief overview of the history of numbers. It has taken quite some time for modern numbers to come to be. Only in the last couple hundred years do we see 
imaginary/lateral numbers really accepted. The dates here are approximate, and keep in mind that most of these civilizations didn't actually have number lines! The 
point here is visualize how numbers developed over time. Finally, notice the difference between zero and zero as a placeholder. In a positional number systems like 
ours, the location of a digit carries meaning. The three in 23 means 3 units, while the three in 32 means 3 "tens", or thirty. We run into a problem if we need to tell the 
difference between 30 and 300, and we don't have zero! This is the placeholder zero, it is not a concept alone, but a notational tool. 
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zero and negative numbers were met with skepticism, 
and largely avoided or ignored. Some cultures were more 
suspicious that others, depending largely on how people 
viewed the connection between mathematics and reality. A 
great example is here Greek civilization – despite making 
huge strides in geometry, the Greeks generally didn’t accept 
negative numbers or zeros, after all how could nothing be 
something?

What’s even wilder is that this is not all ancient 
history - just a few centuries ago, mathematicians would 
intentionally move terms around to avoid having negatives 
show up in equations. Suspicion of zero and negative 
numbers did eventually fade - partially because negatives 
are useful for expressing concepts like debt, but mostly 
because negatives just kept sneaking into mathematics. 

It turns out there’s just a whole lot of math you just can’t 
do if you don’t allow negative numbers to play. Without 
negatives, simple algebra problems like x +3 = 2 have 
no answer. Before negatives were accepted, this problem 
would have no solution, just like we thought Equation 1 
had no solution. 

The thing is, it’s not crazy or weird to think problems 
like this have no solutions – to solve x +3 = 2, we subtract 
3 from both sides, resulting in x = 2 - 3. In words, this 
algebra problem basically says: “if I have 2 things and I take 
away 3, how many things do I have left?” 

It’s not surprising that most of the people who have 
lived on our planet would be suspicious of questions like 
this. These problems don’t make any sense. Even brilliant 
mathematicians of the 18th century, such as Leonard Euler, 
didn’t fully know what to do with negatives – he at one 
point wrote that negatives were greater than infinity.1

So it’s fair to say that negative and imaginary numbers 
raise a lot of very good, very valid questions, such as: 

•	 Why do we require students to understand and 
work with numbers that eluded the greatest 
mathematical minds for thousands of years? 

•	 Why did we even come accept negative and 
imaginary numbers in the first place, when they 
don’t really seem connected to anything in the real 
world?

•	 How do these extra numbers help explain the 
missing solutions to Equation 1?

Next time, we’ll begin to address these questions by 
going way back to the discovery of complex numbers. 

1  Sketchy.

3:20-end

-(   )- = ?
Figure 4 | Negative numbers don't always make sense. Two apples, take away three 
apples equals...the anti-apple?
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Discussion

1.1 Why do you think most people who have lived 
on our planet would have been suspicious of negative 
numbers?

1.2 Why do you think negative numbers have been 
so widely accepted today, despite being somewhat 
sketchy?

1.3 Do you think negative numbers should be taught 
to elementary school students? Why or why not?

1.4 How would you explain negative numbers to a 5th 
grader?

1.5 Which historical civilizations do you think em-
braced mathematics? Which didn’t?

Drill

Plot each function. 
1.6 f(x) = x 2-4x+4

1.7 g(x) = -x 2+x+6

Exercises 1
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Critical Thinking

1.8 Consider the better-behaved sibling of Equation 1:

   a) Plot g(x). 

   b) For what x-values does g(x)=0? g(x)=0 when x 
=_____ or x =______.   These are called the 
roots, zeros, or x-intercepts of g.

   c) The roots of g are much easier to find than the 
roots of f (Equation 1), why is this the case?     

1.9 So far we’ve seen a function with 2 roots, g, and a 
function with no obvious roots, f (Equation 1). Find 
and plot a highest power of two (quadratic) function 
with one obvious root. Call it h(x). Or else. 

1.10 You cut x feet from a 10 foot rope, leaving y feet 
of remaining rope. 

   a) Write an equation relating x and y.

   b) Solve for y when x=7’, x=10’, and x=13’.

   c) One of your answers from part b should be neg-
ative. Is this result meaninfgul? What does a negative 
answer tell you about your remaining rope? Does the 
specific value of your answer matter, or is knowing 
your answer is negative enough to reach a conclusion 
about the remaining rope?

Exercises 1

g(x) = x 2-1

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

10’

x y
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1.11 You have exactly 10 minutes to get to class for 
your big test on lateral numbers! Your friend Gus 
(who’s weirdly in to this sort of thing) says that class 
is exactly 10,000 feet away. Let’s say you travel to 
class at a rate of r feet/minute. You would like to get 
there a few minutes early. More specifically, let’s say 
you will arrive t minutes early. 

a) Write an equation that relates r and t.

b) Compute t for r=1250 feet/minute, r=1000 feet/
minute, and r=625 feet/minute.

c) One of your answers from part b should be nega-
tive. Is this result meaningful? What does a negative 
answer tell you about when you will arrive to class?

Challenge

1.12 Consider the function:

a) According to the fundamental theorem of algebra, 
how many roots should p(x) have?

b) Find all the roots of p(x). You may use technology 
if you would like, but it’s not necessary to complete 
the problem. 

p(x) = x 4-10x 3+35x 2-50x+24

Exercises 1
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Last time, we left off wondering how imaginary/later-
al numbers could help us find the roots of our equation 
x2+1, and further, how imaginary and negative numbers 
even became a part of modern mathematics after be-
ing avoided and ignored for a couple of thousand years, 
because, let’s be honest here – they don’t really make that 
much sense.1

But something happened in Europe around five cen-
turies ago that would no longer allow mathematicians to 
ignore these numbers. An Italian mathematician, Scipione 
del Ferro, was trying to solve a problem not that different 
than ours. 

At some point you’ve likely seen the quadratic formu-
la. This formula is super useful because gives us the roots2 
of any equation with a highest power of two3- all you have 
to do is plug in a, b, and c,and out pops the answer: 

where: 

Del Ferro was trying to find a formula like this for 
equations with a highest power of three - cubics. The gen-
eral case is pretty tough: 

so Del Ferro first considered the case where the x2 term is 
missing4, and the last term is negative: 

In the 16th century, negative terms were way to sketchy to 
write, so del Ferro wrote his cubic as

and required c and d to be positive.5 
Now that we have our equation set up, the game here is 

to get x  by itself on one side, and all the constants6 on the 

1   Imaginary numbers: “Hey, we’re having a little get together next week, we’re 
hoping you can make it!” Mathematicians: “ehhh, we’re a little busy doing real 
math.”
2  Aka solutions, aka zeros – let’s just say it lets’ you find x!
3  Quadratic, hence the name…
4  Making the equation easier to solve, this is called a “depressed cubic”
5  Notice we lost the “a” here as well. We’re allowed to do this by dividing 
through by a, and letting the “new” c be c/a and the “new” d be d/a. After all, 
they’re just constants!
6   constants = a, b, c

other side. This is pretty easy in linear7 equations, we can 
just add, multiply, divide, or subtract until we get x  alone. 

Quadratics are a bit harder – you may have learned to 
do this in school – it requires some cleverness, and factor-
ing by completing the square.

Del Ferro was trying to do the same thing for his cubic 
equation, and through some very clever substitution, he 
eventually found a solution: 8

Just like the quadratic formula, del Ferro’s new formu-
la allowed him to find the solution to cubic equations by 
simply plugging in values. Table 2 shows a summary of 
these types of polynomial equations and solutions.

Now, for some reason, the way mathematicians earned 
money in the 16th century was through challenging other 
mathematicians to what were basically “math duels” – so 
del Ferro kept his new formula a secret to use in his next 
duel.

What happens next is a bit of a long story – here’s the 
quick version. Del Ferro kept the formula secret until he 
was on his death bed, when he finally told his student 

7  highest power 1, this shown in more detail in the first row of Table 2. 
8   If you think del Ferro wasn’t that clever, try solving equation for x yourself. 
A full derivation is available at welchlabs.com/blog.  

Imaginary Numbers Are Real 
Part 2: A Little History

, (2)

.

(3)

(4)

Figure 5 | Highly-paid professional artist rendering of Scipione del Ferro. 1465-
1562. 

Figure 6 | High-stakes math duel. Because that’s obviously what math is for. 
Dueling. 
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Antionio Fior. Foir immediately thought he was invinci-
ble, or at least invincible in a math duel,1 and challenged 
a way more skilled mathematician, Fontana Tartaglia, to 
a duel. Tartaglia had successfully solved similar cubics, 
but had thus far been unable to solve cubics of del Ferro's 
form. Suspecting Foir would be able to solve these tougher 
problems, Tartaglia freaked out before the math-off and 
figured out how to solve the equation at the last minute, 
and proceeded to completely dominate Fior.2 

Tartaglia then went on to share the formula with the 
world! Not really, he kept it super secret so he could keep 
kicking butt in math duels.3 That is, until a very talented 
mathematician named Girolamo Cardano heard about 
the formula, and pressured Tartaglia to share – he eventu-
ally went along, but only after Cardan swore to an oath of 
secrecy. Fortunately for us, after Cardan came across the 

1  So not really invincible
2  This paragraph is a bit different in the accompanying video, where I got this 
detail wrong. I said that Tartaglia had falsely claimed to be able to solve these 
problems, the corrected story above is what actually happened. 
3  Mwhahahaha

surviving work of the original discoverer, del Ferro,4 he 
figured that it wasn’t such a big secret, and published the 
formula in his book Ars Magna. 5

Cardan went on to improve on his borrowed formula, 
even making it work for cubics that included an x2 term.6 
However, along the way Cardan came across a problem. 
In a slightly different version of the equation written as x3 

= cx  + d, under certain values of c and d7, the formula 
would break. 

Let’s take the innocent looking8

when we plug into Cardan’s formula we get a result 
that involves the square root of negative numbers.9 

4   Remember him? ...from like...the last page...
5   Ars Magna = The Great Art (referring to algebra, instead of the lesser 
arithmetic). Fontana was not so happy about Cardan sharing his formula and 
accused him of plagiarism and such. Drama ensued.
6   Cardan did this through clever substitution. Given f(x) = x3+ bx2 +cx 
+d, substitute x = x-b/3. 
7   d2/4-c3/27 < 0
8   Cardan used this example in Ars Magna
9  Note that we’re plugging into Cardan’s modified version (shown in Table 2) 

Figure 7 | Niccolò Fontana Tartaglia. 1500-1557. If you think your nickname 
sucks, it doesn’t – this guy got his jaw sliced by a soldier as a kid, leading to 
a stammer for the rest of his life, and being called “stammerer” (Tartaglia) – 
even in the equations he helped develop. 

Type of 
Equation

Highest 
Power General Form Graphs Look Like General Solution Solution 

Discovered

Linear 1 A long 
time ago

Quadratic 2 ~2000 BC

Cubic 3 *
Early 

1500s

Quartic 4 1540 AD

Quintic 5 Proven not to exist in 1824!

Table 2 | Polynomials and solutions.  *For cubic functions, the general solution shown is to this simplified case. Note that as we increase our highest power, 
polynomials become significantly harder to solve! The quartic case gets a little ridiculous - just one of the 4 solutions to the quartic equation is shown here - as you 
can see - it doesn’t quite fit.

(5)

Figure 8 | Plugging into Cardan’s formula. When we try to use Cardan’s formula 
to evaluate the simple cubic of Equation 5, we run into a small problem. 
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The square roots of a negative number created enough 
of problem to stop Cardan in his tracks. Square roots ask 
us to find a number, that when multiplied by itself, yield 
the number inside the root sign. The square root of nine is 
three because three times three is nine. Importantly, the 
square root of nine is also negative three, because negative 
three times negative three is also positive nine. 

But what about roots of negative numbers? What is the 
square root of negative nine? Positive three won’t work, 
and neither will negative three, so we’re stuck. 

Cardan was stuck too - he didn’t know of any num-
bers, that when multiplied by themselves resulted in a 
negative. 1

Now this certainly wasn’t the first time the square root 
of a negative had shown up – usually mathematicians 
would interpret this as the problem’s way of saying there 
are no solutions, and in many cases this is true.2 However, 
in this case we know there is at least one solution, because 
of the way cubics are shaped.3 

Regardless of their coefficients, cubic functions will 
always cross the x-axis at least once, meaning that our 
equation x3 = 15x+4 will have at least one real solution. 

So what we have here is a problem that must have an 
answer, a formula that has been proven to work. But when 
we put these together – and try to solve the problem with 
our formula – we quickly arrive at what appears to be 
impossible - the square roots of negative numbers. 

Sometimes, when things break in math and science 
it means just that - they’re broken – but there are other, 
more interesting situations in which broken mathematics 
give us the keys to unlock new insights. The way in which 
Cardan's’ formula was broken turned out to be incredibly 
important to mathematics and science, and that’s what 
we’ll begin to discuss next time. 

of del Ferro’s original equation. Cardan’s modification allows us to solve cases  
involving negative values of del Ferro’s constant, c. 
1   He actually did kinda know about these, but wasn’t sure how to apply them 
here. See exercise 3.17.
2  See Exercises 2.11 and 2.14
3   in fact, one solution to Equation 5 is just 4. Check out Figure 13 for an 
example of how cubics are shaped. 

3:20-end
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Discussion

2.1 Why did del Ferro keep his discovery secret?

2.2 Why are problems like √—-16 strange?

2.3 Why do you think math duels are way less popular today than in the 16th century?

Exercises 2

Drill

Plot      Solve by Factoring (If Possible) Solve by Quadratic Formula (If Possible)

2.4 f(x) = x 2 - x - 2 0 = x 2 - x - 2 0 = x 2 - x - 2

x y
-2
-1
0
1
2
3

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

2.5 g(x) = x 2 + 3x + 2 0 = x 2 + 3x + 2 0 = x 2 + 3x + 2

x y
-3
-2
-1
0
1

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4
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Plot      Solve by Factoring (If Possible) Solve by Quadratic Formula (If Possible)

2.6 f(x) = x 2 - 2x + 1 0 = x 2 - 2x + 1 0 = x 2 - 2x + 1

x y
-1
0
1
2
3

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

2.7 g(x) = x 2 + x - 4 0 = x 2 + x - 4 0 = x 2 + x - 4

x y
-3
-2
-1
0
1
2

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

2.8 h(x) = x 2 + 1 0 = x 2 + 1 0 = x 2 + 1

x y
-2
-1
0
1
2

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

Exercises 2
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Critical Thinking

2.9 Why is the Quadratic Formula useful? Does it 
allow you to solve any types of problems that you 
couldn’t otherwise? (Hint: compare exercise 2.7 to 2.4-
2.6)

2.10 Solve for x:

2.11 Sometimes problems like 2.10 are less straightfor-
ward. 

   a) Solve for x:

   

   b) How did part a go? :) If you used the Pythagore-
an Theorem to solve for x, the result should have been 
the square root of a negative number. Sketchy. What’s 
going on here? 

Exercises 2

17

15

x

17

15x
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2.12 Where do the parabola y = x 2-4 and the line y 
= 2x -1 intersect?

2.13 Where do the parabola y = x 2-4 and the line y 
= 2x -3 intersect?

2.14 a) Where do the parabola y = x 2-1 and the line 
y = 2x -3 intersect?

b) Using the Quadratic Formula to solve part a should 
have resulted in the square root of negative number. 
What does this mean about the problem? Plot the 
parabola and line from part a below. 

Exercises 2

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4
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2.15 Solve the equation x 3 = 8 using del Ferro’s for-
mula (Equation 4).

2.16 Solve the equation x 3 + 6x = 20 using del Fer-
ro’s formula (Equation 4).

2.17 Solve the equation x 3 = x + 2 using Cardan’s 
modified version of Del Ferro’s formula (shown in the 
3rd row of Table 2). 

Challenge

2.18 Derive the Quadratic Formula from 		
ax2+bx+c=0 by completing the square. 

2.19 Derive del Ferro’s formula from x3+cx=d by 
witchcraft. 

2.20 What exact values of c and d result in the square 
roots of negative numbers in Cardan’s formula (row 
3 of, column 5 of Table 2)? Exactly how many real 
solutions must this type of cubic have?

Exercises 2
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We left off last time with Cardan and his broken 
formula for finding the roots of cubic functions. Cardan 
knew his problem had to have a solution – but didn’t 
know what to do with the square roots of negative num-
bers that kept popping up in his equations. 

Cardan came close to finding way to make his formula 
work, but got stuck in an algebraic loop, where a bunch of 
work would just lead him right back to where he started. 

It took one more generation of mathematicians to get 
to the bottom of this. Cardan’s student, Rafael Bombel-
li, made some incredible insights about what was really 
going on here.

Let’s remember why Cardan was stuck – the square 
roots of negative numbers ask us to find a number, that 
when multiplied by itself, will yield a negative. Neither 
positive, nor negative numbers will work.   

Bombelli’s first big insight1 was simply to accept that if 
positive numbers won’t work, and negative numbers won’t 
work, then maybe there’s some other kind of number out 
there that will. Now, if there is some other type of number 
out there, a good follow up question is: what are we going 
to call it? After all, we need to use it in our equations.

Bombelli’s approach was a very practical one.2 Rather 
than dream up a new name and symbol3 - Bombelli sim-
ply let the square root of negatives be their own thing. In 
the past, mathematicians would have thrown in the towel 
here and declared the problem “impossible”, but Bombelli 
was able to press on simply by allowing the square root of 
negatives to exist. 

Let’s take a simple example of our new numbers – the 
square root of negative one. Now, for being a new kind of 
number, it doesn’t look very exciting and kind of seems 

1   which wasn’t totally new  - Cardan kinda knew this
2   Although, not that imaginative.
3   Behold the great mystery number kweuasdktst whose symbol is 
ᾤᾮᾋ••• and whos name must not be said.

like our old numbers. But remember - it does have the 
exact special property we need - when we square it, the 
result is negative. Further, since this number is neither 
negative nor positive, it must be something new. 

Now if this all seems a bit fishy to you - like a slightly 
too convenient algebra trick, you’re in good company.4 

In fact, it’s hard to introduce imaginary5 numbers 
without them sounding like an arbitrary invention. How-
ever, before we dismiss the square root of minus one as 
some abstraction invented to torture students, let’s review 
what we’ve learned thus far. 

Cardan and Bombelli were genuinely stuck on a tough 
problem that they knew had a solution. What Bombelli 
was able to see, is that if he extended the existing number 
system, as had been done so many times before,6 he could 
solve the problem. 7 Just as people needed fractions, zero, 
and negative numbers to solve new problems in past; to 
solve this problem, Bombelli now needed the square root 
of negative one to be its own, brand new, number. 

Let’s make sure we’re clear about what it means for the 
square root of negative one to be its own number. If our 
new number is truly a discovery and not an invention, it 
should behave like the other numbers we already know 
about – it should follow the established rules of algebra 
and arithmetic. And it turns out it the square root of mi-
nus one does, for the most part. 

Just as we can split apart the root of the product of 
2 positive numbers, 8 we can also split apart our square 

4   Cardan and Bombelli felt the same way!
5   Lateral
6   From integers to fractions to zero to negatives. 
7   Remember that extending the number system before allowed us to solve 
problems we wouldn’t have been able to otherwise, like x-3=1.
8   Like sqrt 2* sqrt 3 = sqrt 6, but be careful, sqrt -1 * sqrt -1 does not equal 1! 
(not all rules apply to imaginary numbers).

Imaginary Numbers Are Real 
Part 3: Cardan’s Problem

Figure 9 | Rafael Bombelli. 1526-1572. Rafael was apparently pretty good at 
draining swamps, which is cool...I guess.

Figure 10 | The Square Root of Minus One. Here’s the brand new number we need 
to fix our problems. It doesn’t look like much, which is why our artist has added 
these bold, dramatic lines. 

(6)
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roots of negatives. The square root of minus 25 splits into 
the square root of 25 times the square root of negative 
one.

This process is important because it allows us to 
express the root of any negative using the square root of 
minus one. The square root of minus 25 becomes 5 times 
the square root of minus one. 

We can use this process to expand the root of any 
negative number, and write it as some number we already 
know about, times the square root of minus one. 

Let’s quickly make sure our new numbers follow the 
same rules as other numbers. In algebra problems with 
x, only like terms can be added and subtracted. 2x+3x is 
5x, but 2+3x is just 2+3x.1 Likewise, 2√—-1+3√—-1=5√—-1, 
but 2 + 3√—-1 is just 2 + 3√—-1. Finally, unlike terms can 
be multiplied just as in algebra with x: 5 times x is just 5 
x, and 5 times √—-1 is just 5√—-1. 

Now, there are some cases where our new numbers 
behave a little strangely, but these can often be avoided by 
first separating out the square root of minus one. Table 3 
shows some examples.

Now that we have a grasp on how our new numbers 
work, we can see how they fix one of our problems from 
last time. We now have a strategy for dealing with the 
roots of negatives. We can evaluate the square root of neg-
ative 9 we we’re stuck on, and obtain 3 times √—-1. 

1   Because 2 and 3x are not like terms

All this is important, but isn’t enough to solve Car-
dan’s problem – we still need to figure out how to deal 
with the cube roots of these numbers.2 Bombelli was able 
to solve our problem through one more powerful insight 
here, and that’s what we’ll discuss next time. 

2   Cardan’s formula in Figure 8 involve the cube root of the square root of 
negatives!

12

If you’re really a 
number, act like one!

(10)

Figure 11 | Suspicion. Here we see twelve, an already established number, 
interacting with our new number for the first time. As we can see, it’s not going 
well.

(7)

(8)

(9)

Algebra with x                 Algebra with                

 

Table 3 | Algebra With the Square Root of Minus One. The square root of minus 
one behaves like the numbers we already know about, for the most part. The 
one thing we are not allowed to do is shown in the bottom right square. Instead, 
we should: rewrite the expression as √—-1√—5 .√—-1√—2 = √—-1√—-1√—5√—2 = -1.√—10 
=-√—10
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3.6 √—-5 + √—-5

3.7 √—-5 + √—5

3.8 16 + √—-16

3.9 √—-4√—4

3.10 √—-512

3.11 7/√—-7

3.12 √—-4 √—-4

3.13 1/√—-1

Exercises 3

Discussion

3.1 Rafael Bombelli was born in 1526. For thousands 
of years before Bombelli’s time, people used math-
ematics to solve all kinds of problems without any 
need for √—-1. What do you think was so compelling 
about Cardan’s problem that led Bombelli to consid-
er using a completely new type of number to solve 
it?

3.2 Imagine you’re working on a hard math problem. 
In fact, it’s so hard, that no one on the planet has 
solved it yet. You work and work and work and get 
nowhere. Your friend Gus, who has been working on 
the same problem, excitedly tells you that he’s found 
a solution! He shows you his work, and tells you that 
if works perfectly with one minor catch. To solve the 
problem he has allowed an entirely new kind of num-
ber to exist. A type of number that no one has used 
before. How would you respond to Gus?

Drill

Simplify the following. Helpful examples can be 
found in Table 3 and Equation 9. 

3.3 √—-16

3.4 √—-51

3.5 √—-4
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b) How did part a go? This problem dates back to 
Cardan himself. In his book Ars Magna, Cardan 
gives the task of dividing 10 into parts whose 
product is 40, and calls this “manifestly impossible.” 
You may have reached a similar conclusion. However, 
Cardan does push on in Ars Magna and gives 
the solution 5+√—-15, and 5-√—-15. Show that these 
numbers add to 10 and multiply to 40. 

Interestingly, even though Cardan gave this solution, 
he didn't think very highly of it, saying: “So 
progressing arithmetic subtlety the end of which, as 
is said, is refined as it is useless.”   

Challenge

3.18 One solution to q(x)=0 is √—-4. Find all other 
solutions. 
 

Critical Thinking

3.14 Why do all cubic functions have to have at least 
one root?

3.15 Find two numbers that multiply to 15 and add 
to 8. 

3.16 Find two numbers that multiply to 11,187 and 
add to 212.

3.17 a) Find two numbers that multiply to 40 and 
add to 10.

q(x) = 6x 4-5x 3+20x 2-20x-16
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Last time we decided to let √—-1 be its own new type of 
number, hoping it would help us solve Cardan’s problem. 
Doing this is helpful, but finding a solution requires one 
more insight from our friend Rafael Bombelli.

Bombelli knew that because of the way cubics are 
shaped, as shown in Figure 13, Equation 5 had to have a 
solution that didn’t involve √—-1, it had to be a plain old 
regular positive or negative number as he had seen before. 

His second big insight here was that for this to be the 
case, the root of minus one parts of each half of the equa-
tion must cancel out when added together! 1

Bombelli used this idea to equate the two parts of 
the equation shown in Figure 12 to a+b√—-1 and a–b√—-1, 
where a and b are constants we need to find.2 

We can first eliminate that pesky cubed root by cubing 
both sides of Equation 11. The result is a particularly 
tough system of equations: 

Bombelli was able to get around this through some 
clever guessing and checking. If we look at our original 
equation (Equation 5), and test a few integers3 we eventu-
ally see that 4 is a solution! If we substitute 4 into our new 
equations, we can solve for a and b and obtain a = 2 and 
b= 1. These values make the two parts of Equation 11 
equal to 2+√—-1and 2-√—-1. 

1 They must be complex conjugates! 

2 We’re allowed to do this because  a+b√—-1+ a-b√—-1 = 2a
3 1...nope, 2...nope, 3...nope

We can cube these to show that these are in fact 
equivalent to the left sides of Equation 11– and, more 
importantly, when we add the two parts, as Equation 4 
tells us to do, we just get 4 – which we know is a solution 
to our original equation.4 We have found the solution to 
Cardan’s problem!5

And what’s really interesting is that our problem had 
nothing to do with the square root of minus one and 
neither did our answer – however, along the way, we 
found that by extending our number system to include the 
square root of minus one, we were able to find the solu-
tion.6 And it turns out that extending the number system 
in this way is helpful in lots and lots of other problems as 
well.7

So what did Bombelli do to celebrate after discovering 
a number crucial to the future of science and mathemat-
ics?8

He actually did nothing. He discounted his discovery 
and basically said it was a hack.9

As ridiculous as that seems now, Bombelli drew pretty 
reasonable conclusion at the time. It just seemed a little 

4  The √—-1 parts cancel!
5  If this math seems a bit hacky, fear not, we'll learn a much more robust 
approach soon. 
6 “The shortest path between two truths in the real domain passes through the 
complex domain.” ---Jacques Hadamard
7 Lots of problems. Like lots and lots of problems. And not just math prob-
lems. Science problems. Engineering problems. Relationship problems. Ok, 
not that last one, but the rest are legit. 
8  MATH RAVE?!?!
9  “The whole matter seemed to rest on sophistry rather than truth”. - Rafael 
Bombelli. In case you aren't quite up to speed on your random words from the 
17th century, Sophistry is the use of fallacious arguments, especially with the 
intention of deceiving.

Imaginary Numbers Are Real 
Part 4: Bombelli’s Solution

Figure 13 | Some Cubics. The end behavior of cubics mean they must have at 
least one real zero. More specifically, as we move to the left or right on our graph 
and follow our cubic curve, it must go up on one side and down on the other. 
Technically: as x→∞, f(x)→∞ and as x→-∞, f(x)→-∞, or as x→∞, 
f(x)→-∞ and as x→-∞, f(x)→∞.

Figure 12 | Reminder of Cardan’s problem. When we try to use Cardan’s 
otherwise functional formula (Equation 4) to evaluate the simple cubic of 
equation 5, we run into a problem. 

(11)

(5)

(4)

(12)
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too convenient – like this is a little trick devised just to 
solve problems like this.1 

Squaring numbers, had, up until that point, largely 
been associated with what the operation is named for – 
squares. A square’s area is equal to the length of its side, 
squared. So positive areas make sense – but what could a 
negative area be? What even is √—-1?

Questions like these slowed down the development of 
imaginary numbers. It turns out there is a much deep-
er and richer meaning lurking below the surface, but it 
would take long after Bombelli’s death to be revealed. 

1   This is how a lot of student seem to feel when they first meet √—-1, and it’s a 
completely legitimate reaction – if you feel this way about it – you’re in good 
company. 

Area Associated Sqaure Side Length

16 √—16=4

9 √—9= 3

4 √—4=2

1 √—1=1

-1 √—-1=?

4

4

3

3

2
2

1
1

?
?

Table 4 | Sketchy Squares. Historically, the operation of squaring was associated 
with what it was named for, squares. But what could a square with a minus area 
possibly look like?
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Discussion

4.1 Why do you think Cardan and Bombelli mistrust-
ed √—-1?

4.2 The Greeks were arguably the most sophisticated 
mathematicians of the ancient world, and today are 
remembered for their many contributions to geometry. 
If Bombelli were to travel back in time, do you think 
he could convince the ancient Greeks to adopt √—-1?

Drill

4.3 √—-1.(1+√—-1)

4.4 (1-√—-1).(1+√—-1)

4.5 (2+3√—-1).(2+3√—-1)

4.6 (5-2√—-1)2

4.7 (5√—-1-2√—-1)2

Solve for a and b: 
4.8 2+√—-121 = a+b√—-1

4.9 √—-4 = a+b√—-1

4.10 √—4 = a+b√—-1

Find a solution by guessing and checking:
4.11  a2 + b2 = 50
       a  - b3 = 6

4.12  a(a2 + b2) = 0
       a  + b = 1

Exercises 4
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4.13  a(a2 + b2) = 2
       a  + b = 2

Critical Thinking

In this section, we'll try to get a better feel for 
exactly how Bombelli solved Cardan's problem, 
x 3=15x+4.

4.14 How did Bombelli justify writing the equation 
below?

4.15 Show that cubing the top line of Equation 11 
results in: 

(11)

4.16 Show that:

by equating the "normal" and "√—-1" parts from 
exercise 4.15. 

4.17 Back in exercise 4.15, we only cubed the top line 
of Equation 11. Cube both sides of the bottom line of 
11, and turn the result into a system of equations as 
the did in Exercise 4.16. What do you notice?

4.18 Using Equation 12, and the fact that x=4 is a 
solution to our Cardan's problem, x 3=15x+4, derive 
that a = 2 and b = 1.

(12)
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4.21 So, what is the expression below 
(remarkably) equivalent to? 

If you feel that Bombelli's method is a bit 
hacky, you're in good company. The sketchiness 
here really surrounds taking the cube root of 
our new types of numbers that involve √—-1.
Problems like this have confused lots of very smart 
mathematicians. In the next few sections, we'll 
find a nice way to think about these problems 
that makes this process much simpler and 
intuitive.1 

Challenge

4.22 Solve for a and b:

4.23 Perhaps not surprisingly, Equation 12 has 
more than one solution. Show that other solutions 
to Equation 12 lead to more solutions to Cardan's 
original problem, x 3=15x+4. You may use 
technology. (Unless you're a complete bad-ass and 
don't need it)

1  Once we cover this exciting new ground, we'll revisit this problem in the 
Critical Thinking exercises in Section 8. 

4.19 The solution we found to Equation 12,  a = 2 
and b = 1, mean that this must be true:

cube both sides to each equation to prove this.

 
4.20 Finally, show that using our solution above 
does result in a solution to Cardan's problem, 
x 3=15x+4.
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We left off with Bombelli’s discovery that if he allowed 
the square root of minus one to be its own number, he 
could solve problems that had been stumping mathemati-
cians for decades.  

Despite the usefulness of his discovery, Bombelli and 
other mathematicians generally regarded it as a hack – 
after all, what could it possibly mean to take the square 
root of a negative number? Just like our friends zero and 
negative numbers before, the square root of negative one 
was generally regarded with suspicion because it didn’t 
correspond to anything people could think of in the real 
world.

For this reason, the square root of minus one was giv-
en the terrible names imaginary or impossible. A century 
or so later Euler began using the symbol i to indicate 
the square root of negative one, making the algebra less 
clunky.1 

Unfortunately, the name imaginary stuck around, and 
that’s still what we call these guys. In response, everything 
on the original number line gets the name real.2

When we put together a real and imaginary part, we 
get what we now call a complex number. 

1   We’ll start doing this too! I’m really sick of saying and writing root minus 1
2   Imagine how this must make lateral numbers feel. "Hey, we're going to call 
all the numbers, except for you, real." 

What is remarkable about this time period3 is that 
although imaginary and complex numbers were used in 
calculations and derivations4, the deeper meaning behind 
these numbers was left undiscovered for over 200 years 
after Bombelli’s death.  

Before we dive into this deeper meaning, let’s think 
about i algebraically for a moment. 

If we raise i to higher and higher powers, it doesn’t get 
bigger as other numbers would. We know i squared is -1 
from the definition, and if we keep multiplying i by itself, 
we see a pattern that repeats every four multiplications.5 
Over and over and over and over. Hold on to that fact for 
a few paragraphs. 

3   ~1600-1800 AD
4   Pensively
5   It has a period of 4. 

Imaginary Numbers Are Real 
Part 5: Numbers are Two Dimensional

Figure 14 | Leonard Euler. 1707-1783. Brilliant mathematician who got sick of 
writing √—-1 all the time.

(13)

Real

1 2 43-4 -3 -1-2 0

The Numbers
^

Figure 15 | The numbers get re-branded. Because everything that’s not imaginary 
must be real, obviously...

3 + 2i
Real Part Imaginary Part

Complex Number

Figure 16 | Complex Numbers. When we put together a real and imaginary/lateral 
number, the result is what we’ll call a complex number. 

Real Numbers Imaginary Numbers Work

21=2 i 1=i

22=4 i 2=-1

23=8 i 3=-i i 3=i.i 2=i.-1

24=16 i 4=1 i 4=i 2.i 2=-1.-1

25=32 i 5=i i 5=i 4.i=1.i

26=64 i 6=-1 i 6=i 4.i 2=1.-1

27=128 i 7=-i i 7=i 4.i 3=1.-i

28=256 i 8= 1 i 8=i 4.i 4=1.1

29=512 i 9= i i 9=i 4.i 4.i=1.1.i

Table 5 | Patterns. When we raise real numbers to higher and higher powers, they 
get bigger (for real numbers greater than 1). Interestingly, this is not the case 
with imaginary numbers. Instead, a pattern emerges. 
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Let’s return to our friend, the number line. Remember 
that all the numbers we know about1 show up here, except 
imaginary numbers. They are nowhere to be found. 

If we think back to our original problem with roots of 
negative numbers, we can visualize this using the number 
line. Remember the issue we had was finding a number, 
that when multiplied by itself, would yielded a negative. 

To see this more clearly, we’ll use arrows instead of 
dots to indicate numbers (Fig 17). Multiplying a positive 
by itself maintains direction on the number line – it stays 
positive. If we multiply by a negative, we flip directions, or 
rotate by 180o. Squaring a negative lands us in the positive 
numbers because we start on the left side with our first 
negative and rotate 180o when we multiply by the second 
negative. So there’s no way to land on a negative number 
when squaring, a positive squared results in a positive and 
negative squared requires starting in negative territory, 
and when we multiply by the other negative we arrive 
back in the positive numbers. 

So what we need is something in the middle. A num-
ber that when we multiply by it, only rotates 90o, not 180o 
as negatives do. 

This is exactly what imaginary numbers do – i squared 
is negative one, meaning that the first i puts us 90o from 
the positive real numbers, and multiplying by i rotates 
us 90o further, exactly where we wanted to be, firmly in 
negative number territory. 2

Back to that fact you’re hanging on to from Table 5. 
Since multiplying by i corresponds to one 90o rotation, if 
we place our imaginary axis at a right angle to our num-
ber line, our algebra will perfectly fit with our geometry 
(Fig 19). 

If we start with the real number 1 and multiply by i, 
algebraically we get i – which geometrically corresponds 
to a 90o rotation from 1 to i. Multiplying by i again results 
in i squared, which, by definition, is minus 1 which again 

1   Integers, zeros, fractions, rational numbers, irrational numbers, transcen-
dental numbers
2   Minus i does the same thing!

matches a 90o rotation from i. As we keep raising i to 
higher and higher powers, we keep rotating around, with 
our values repeating every fourth power, just as they did 

3 6 9-9 -3-6 0

3

9

3.3=9

3 6 9-9 -3-6 0 3-6

3.-2=-6

3 6 9-9 -3-6 0 9-3

-3.-3=9

Figure 17 | Multiplication using the number line. Multiplying by a positive 
number maintains direction on the number line, while multiplying by a negative 
switches direction. Squaring can never result in a negative number, because 
multiplying a positive time a positive maintains direction, while multiplying a 
negative by a negative flips us back in the positive direction. 

0-1

i.i = -1
1-1

Figure 18 | Multiplication by i. One way to understand what multiplying by i is as 
a rotation by 90o. Multiplying i by itself moves us a total of 180o, exactly what we 
need to land on -1. 

-1

i=i5

1-1 1

i

-i

i

-i

Real

Imaginary

i2=i6=-1

i3=i7=-i i4=i8=1

Figure 19 | Pattern Matching. Understanding multiplication by i as a 90o rotation 
perfectly matches the behavior we see in Table 5. Crazy. 
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algebraically. 
So the insight here is that imaginary numbers do not 

exist apart from the real numbers, but right on top of 
them, hiding in a perpendicular dimension. 

This is the deeper meaning beneath imaginary num-
bers. They aren’t just some random extra number or hack 
- they are the natural extension of our number system 
from 1 dimension to 2. 

Numbers are 2 dimensional.1
And what’s even more remarkable, is that if we accept 

this – that numbers have a hidden dimension – we end up 
not only with more complete mathematics, but incredibly 
powerful tools for science and engineering. 

Next time we’ll show how and why thinking of num-
bers this way is useful. 

 

1  If anyone tells you this is obvious or easy they’re lying. Despite using i in 
calculations, generations of very bright mathematicians missed this for over 
200 years.

3:40-end
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Discussion

5.1 Why might interpreting multiplication by a nega-
tive number as a 180o rotation make sense?

5.2 Why might it make sense for imaginary numbers 
to be placed at a right angle to real numbers?
 

5.3 Do you think numbers are two-dimensional? 
Why or why not?

Drill

5.4 i 2

5.5 i 20

5.6 i 21

5.7 i 22

5.8 i 23

5.9 i 1000

5.10 i 1001

5.11 i 1002

5.12 i 1003

5.13 i -1

5.14 i -20

Critical Thinking

5.15 As shown in Figure 18, multiplying i by itself 
(i 2 = -1) can be interpreted as a 180o rotation from 
the positive real axis to the negative real axis. Since 
(-i )2 also equals -1, what could multiplying by -i 
represent?

5.16 True or false?

Exercises 5
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The central idea of this section, that imaginary numbers 
should be placed at a right angle to the real numbers, 
is not obvious. We know this because it took over 200 
years after Bombelli's death to discovered. This idea was 
finally unearthed by two non-mathematicians separately, 
Casper Wessel and  Jean-Robert Argand, around 1800. 
However, like most good ideas in math and science, this 
one took quite some time to be accepted. In 1831, the 
mathematician Augustus deMorgan said of the topic:

    It's interesting to think about how exactly 
mathematicians struggled with and argued about these 
ideas during this period. A long standing practice in 
mathematics, (dating most notably back to the Greeks), 
is the idea of geometric proof. Speaking very roughly: 
if we can represent a mathematical idea visually, it 
must be true. Whether or not this is the right way to 
approach mathematics is an open question, but this way 
of thinking is certainly valuable, and fueled mathematical 
development for millennia. When √—-1 began showing up 
in mathematics in the 17th century, many mathematicians 
attempted and failed to find a way to explain or 
understand √—-1 visually/geometrically. This difficulty  
contributed to the mistrust of √—-1. 
    Now that √—-1 has a strong visual interpretation 
(existing at a right angle to the real numbers) and has 
become firmly rooted in mathematics, it's interesting to 
look back at historical attempts to show visually what 
the √—-1 could possibly mean. One interesting example 
comes from an 1803 publication from Lazare Carnot:

    Let's temporarily assume that drawing pictures to 
represent mathematics is a good idea and draw a picture. 

From Carnot's problems statement, we can write the formula:

5.17 Let's say a = 8 in Carnot's problem. Solve for x, the length 
of one of our segments. 

How did Exercise 5.17 go? When Carnot solved this equation for 
x, his result was a complex number (hopefully your result was 
complex as well, specifically 4+4i and 4-4i). Carnot interpreted 
the fact that his result was complex as meaning that the cut 
point we're looking for does not lie on AB, thus the problem 
was physically impossible. However, other mathematicians (such 
as the Frenchman Abbè Adrien-Quentin Buèe) interpreted 
this result differently. Roughly speaking, Buèe agreed that the 
problem was physically impossible, but argued that the results 
was nonetheless meaningful. More specifically, if we allow 
imaginary numbers to exist in the dimension perpendicular to 
the real axis, we obtain some type to picture like this: 

5.18 What is the distance between A and C, shown above? 

5.19 Does your answer to 5.18 make sense in terms of Carnot's 
original problem?

So, if we allow imaginary numbers to live perpendicularly to 
the real numbers, the answer we obtain does make some type of 
sense. Sure, there's still no way to cut the string the achieve what 
we want physically, but the results also are not meaningless. 
They tell us there is an answer, but we must move 4 units in the 
perpendicular (imaginary) direction to find it.  Problems like 
this don't make a very strong case for √—-1, which helps me 
understand why this matter was so contentions for so 
long. Only later, when our geometric interpretation √—-1 
was shown to be indispensable to math and science did 
these ideas become widely accepted.

"We have shown the symbol √—-1 to be void of 
meaning, or rather self-contradictory and absurd."

Given a line segment AB of length a, how can it be 
divided into two shorter segments so that the product 
of their lengths is equal to one-half the square of the 

original length? 

a
x a-x

A B

8

x =
 4+

4i

A B

4

4i

C
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the same exact thing with vectors. Where complex num-
bers really get interesting is through multiplication. 

We can multiply complex numbers together by foiling, 
just as we do with binomials in algebra, with the minor 
complication that we know i2 can be replaced with -1. 

This is a perfectly valid algebraic solution to our prob-

lem – but is only half the picture. There is another, equally 
valid, way to think about multiplying complex numbers. 
And it has everything to do with the complex plane.  

Instead of just telling you what this interpretation is, 
it will be more way more fun to try to figure it out with 

Imaginary Numbers Are Real 
Part 6: The Complex Plane

Last time we arrived at an incredibly powerful tool 
in mathematics, science, and engineering: the complex 
plane. The complex plane is an extension of the number 
line, where we include the imaginary dimension vertical-
ly. Just as we can plot xy coordinates on the xy plane, we 
can plot complex numbers on the complex plane. 

This arrangement is why Gauss preferred the term 
lateral over imaginary and inverse instead of negative.1 
Gauss suggested we should call the numbers to the right 
of the origin are direct, numbers to the left inverse, and 
numbers up or down lateral. 

Now that we’ve seen the complex plane, let’s discuss 
why it’s so powerful. We’ve seen two dimensional planes 
before2 where each axis represents a different quantity, in 
fact we started our whole series with one. 

In a normal xy plane, there’s no required connection 
between the dimensions, no rules about how they should 
relate to one another. On the complex plane however, 
we have the rules of algebra with complex numbers we 
discussed earlier. These rules impose a very specific and 
useful relationship between our two dimensions. 

This first rule is how complex numbers add and sub-
tract. The real and imaginary parts add independently, 
making complex numbers and the complex plane useful 
for problems involving movement in two dimensions. If 
we travel in one direction for a certain distance, and then 
in another direction, we can add the components of each 
part of our trip together to find the total distance we have 
traveled in each direction (Fig 21).3

So that’s cool, but as you may already know, we can do 

1  We first saw this idea from Gauss back in Part 1. 
2   Like the x, y (Cartesian coordinate system) plane
3   AKA Displacements

Real

Imaginary

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

x

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

THE COMPLEX PLANE THE XY PLANE

(1, 2)1+2i
(-3,-3)

(1, -1)

-3-3i

1-i

Figure 20 | The complex plane and its xy cousin. These planes have a lot in 
common. They both come outfitted for adventure with cartesian coordinate 
systems. However, the complex plane has has a special twist that makes it way 
hotter than its boring cousin. GUASS’ NAMES OUR (DUMB) NAMES

PositiveNegative

Imaginary

Imaginary

DirectInverse

Lateral

Lateral

Figure 20 | Gauss’ names for numbers and ours. “That this subject [imaginary 
numbers] has hitherto been surrounded by mysterious obscurity, is to be 
attributed largely to an ill adapted notation. If, for example, +1, -1, and the 
square root of -1 had been called direct, inverse and lateral units, instead 
of positive, negative and imaginary (or even impossible), such an obscurity 
would have been out of the question.” -Gauss

Real

Imaginary

1 2 43

1

2

3

4

4+i
1+3i

5+4i
4+i 

+ 1+3i
5+4i

Figure 21 | Adding complex numbers. We add complex numbers by adding the 
real and imaginary parts seperately. This has a nice visual interpretation, adding 
complex numbers is exactly like adding vectors, we place the second arrow at the 
end of our first, and wherever it’s tip lands is our result. 

(14)
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some examples.1 To discover this deeper meaning for 
yourself2, all you need know is the following: how to mul-
tiply complex numbers algebraically as we just did, how to 
plot numbers on the complex plane, the Pythagorean the-
orem, and finally how to use arctangent to find angles. 3

What’s pretty cool here is that if you’re able to figure 
out what we’re after here – the interpretation of complex 
number multiplication using the complex plane – you’ll 
have figured out a super useful bit of math that was un-
known to the smartest mathematicians on the planet until 
only 2 centuries ago.  

Next time we’ll uncover this interpretation of complex 
multiplication using the complex plane – and we’re going 
to do it with only 4 examples:

Through considering each of these problems on the 
complex plane and looking at the patterns that naturally 
emerge, we’ll arrive at the deeper meaning we’re looking 
for. 

Do try this at home, you'll find these problems nicely 
laid out for you in the Critical Thinking section of the fol-
lowing exercises. Even if you’re already a boss at complex 
numbers or have no idea what I’m talking about – I prom-
ise it’s a valuable process - and we’ll sort our all the details 
next time. 4

1   ...I promise. 
2   Just as Wessel, Argand, and Gauss did  a couple centuries ago… but Bom-
belli failed to (!). 
3   …or  you could just google. But I promise you’ll learn less that way. 
4   Do it. Seriously. Do it. Do the math problem. Sit down and do it. It will take 
like half an hour tops. And if you figure it out, you can tell all your friends 
your smarter than the 16th Century mathematician Gerolamo Cardano. And 
they’ll definitely think you’re really cool. For sure. Do it. 

a2+b2=c2

a

bc

x

y

Figure 22 | Tools you’ll need. These are the tools you’ll need for your mission, 
should you choose to accept. You will also need to use complex multiplication 
as shown in Equation 14 and to plot points on the complex plane as shown in 
Figure 20.
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Discussion

6.1 Why did Guass prefer the names direct, inverse, 
and lateral over positive, negative, and imaginary?

6.2 What do the xy plane and the complex plane 
have in common? How are the different? Fill in your 
answers in the super cool Venn diagram below.
 

Drill
Simplify:
6.3 (1+i)(1+i)

6.4 (1+i)(1-i)

6.5 (2+2i)(1-2i)

6.6 -i(3+5i)

6.7 (x+(1+i))((x +(1-i))

6.8 (-2-i)2

Simplify (your answer should not have an i in the 
denominator):

6.9

6.10

6.11

Exercises 6

XY Plane Complex Plane
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Problem Solve Algabraically Solve Graphically

6.12 (2+i) + (1+2i)

Real

Imaginary

1 2 43

1

2

3

4

6.13 (-3+i) + 2i

Real

Imaginary

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

6.14 (2+i) - (1+2i)

*Vaguely helpful hint: Try writ-
ing as an addition problem. 

6.15 2.(2+i)

Real

Imaginary

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

Real

Imaginary

1 2 43

1

2

3

4
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Critical Thinking

6.16 What is the connection between complex multiplication and the complex plane? To figure this 
out, we'll look at four examples.  This is by far my favorite exercise in the entire workbook. It's cool because if 
you figure it out, you'll have discovered something that mathematicians missed for over 200 years. 

a) To get started, for each example compute the product, plot the two numbers we're multiplying together, and 
plot the result. The first example has been done for you.1

b) Use your results from a to complete the table below.

c) What patterns do you see? What is the connection between complex multiplication and the complex plane? 

1  Wow, that Stephen Welch is such a nice guy, doing a whole problem for you!

Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 8

i

4+3i-3+4i

Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 8

Real

Imaginary

6 12-12 -6

24

6

18

12

-18-24 18 Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 824

1.(4+3i).i =
4i+3i2=
-3+4i

2.(4+3i).2i 

3.(4+3i).(4+3i) 4.(2+i).(1+2i)

Problem Result Angle 1 Angle 2 Result Angle Distance 1 Distance 2 Result Distance

(4+3i).i -3+4i 36.9° 90° 126.9° 5 1 5

(4+3i).
2i

(4+3i).
(4+3i)

(2+i).
(1+2i)  
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Last time we left off with a real math problem: what is 
the connection between complex multiplication and the 
complex plane? 

To get to the bottom of this we’ll use the four exam-
ples we mentioned last time. For each example, we’ll plot 
the two numbers we’re multiplying together in Figure 23. 
We’ll also compute the result algebraically and add it to 
each plot. 

Our job now is to look for patterns. Back in part five, 
we learned that i has something to do with rotation on 
the complex plane. So a good thing to keep track of here 
will be the angle our complex numbers make with the real 
axis.

We can determine our angles using a little trigonome-
try, specifically the arctangent function. 

For each example, we’ll add the angle of each com-
plex number to Table 5. Now let’s look for a connection 
between our three angles. 

After a little pondering1, we see that the angle of our 
result is exactly equal to the angles of the numbers we’re 
multiplying, added together.  

This is the first of half the connection we’re looking 
for: when multiplying on the complex plane, the angle of 

1   Hmmmm... 

Imaginary Numbers Are Real 
Part 7: Complex Multiplication

Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 8

i
4+3i-3+4i

Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 8

2i
4+3i

-6+8i

Real

Imaginary

6 12-12 -6

24

6

18

12

-18-24 18

4+3i

7+24i

Real

Imaginary

2 4-4 -2

8

2

6

4

-6-8 6 8

2+i

5i

24

1+2i

Figure 23 | Our four examples from last time plotted on the complex plane. We’ll use these examples to figure out the connection between the complex plane and complex 
multiplication. 

Real

Imaginary

1 2 43

1

2

3

4

4+3i

3

4

4
3

36.9˚

Figure 24 | Arctangent. We’ll use the arctangent function to find the angle each of 
our complex numbers makes with the real axis. 

Problem Angle 1 Angle 2 Result Result Angle

(4+3i).i 36.9° 90° -3+4i 126.9°

(4+3i).2i 36.9° 90° -6+8i 126.9°

(4+3i).
(4+3i) 36.9° 36.9° 7+24i 73.8°

(2+i).
(1+2i) 26.6° 63.4° 5i 90°

Table 6 | Patterns? What is the connection between our angles for each example?
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our result is equal to the sum of the angles of the numbers 
we’re multiplying. 

Let’s now have a closer look at our first two examples. 
Notice that the angles are identical, but the resulting 
complex numbers are not. This means that just keeping 
track of angles alone is not enough to sufficiently describe 
complex multiplication in the complex plane – there is 
something else going on. 

So what is the difference between these examples? It 
looks like multiplying by 2i has pushed our result further 
from the origin than multiplying by i. 

A good follow up question is “how much further?”
We can measure the distance between the origin and 

our complex numbers by forming right triangles and 
using the Pythagorean theorem. 

Just as before, let’s compute our measurement for each 
example and look for patterns We’ll put the results in 
Table 7. 

After some more pondering1, we see that if we mul-
tiply the distances from the origin of the numbers we’re 

1   Also hmmmmm...

multiplying, we obtain the distance from the origin of the 
result!

We now have the complete picture. When we multi-
ply complex numbers on the complex plane, their angles 
from the real axis add, and their distances from the origin 
multiply. 

This is the connection we were looking for between 
complex multiplication and the complex plane. 

We now have completely separate, but completely 
equivalent interpretations of complex multiplication. To 
multiply two complex numbers together, we can fol-
low the rules of algebra, OR, we can find each numbers 
distance from the origin and angle to the real axis on the 
complex plane and multiply and add each.

And what’s really cool here is that although these 
approaches look and are totally different, but they do the 
same exact thing. What we’re seeing here is the same un-
derlying process from two separate vantage points. I really 
like this idea, because it reminds me that there’s more 
to math than what we see on the page. There are deeper 
truths embedded in our universe, and math is one way of 
expressing them.

Real

Imaginary

1 2 43

1

2

3

4

4+3i

3

4

c

c2 = 32+42

c2 = 9+16
c2 = 25
c = 5

Figure 25 | Pythagorean Theorem. We’ll use the Pythagorean Theorem to find the 
distance between each of our complex numbers and the origin. 

Problem Distance 1 Distance 2 Result Result 
Distance

(4+3i).i 5 1 -3+4i 5

(4+3i).
2i 5 2 -6+8i 10

(4+3i).
(4+3i) 5 5 7+24i 25

(2+i).
(1+2i) √—5 √—5 5i 5

Table 7 | More Patterns? What is the connection between our distances for each 
example?

Real

Imaginary

A

C
B

C
A

B

A B C+ =
A.B=C

Figure 26 | Our Result. When we multiply two complex numbers, their angles 
add and distances to the origin multiply. 

Figure 27 | Two perfectly good ways to multiply complex numbers. We can 
multiply complex numbers algebraically as shown on the left, or we can use the 
complex plane as shown on the right.
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Now that we’ve made our discovery, let’s formalize our 
results a bit. We found that the quantities we should keep 
track of when multiplying complex numbers on the com-
plex plane are the distance from the origin and the angle 
from the real axis. 

These quantities turn out to be so important, that 
we use them as another way to write complex numbers. 
Instead of writing complex numbers as the sum of their 
real and imaginary parts1, we instead write them as their 
distance from the origin and the angle they make with the 
real axis. This is called polar form, and the distance from 
the origin gets a special name, magnitude.2

Multiplying complex numbers in polar form is super 
easy – we just multiply the magnitudes and add the an-
gles. Division is pretty simple too, especially compared to 
dividing in rectangular form - to divide in polar form we 
divide our magnitudes, and subtract our angles. 

Next time we’ll show that this discovery is not only 
cool, but useful. We’ll use the complex plane to make hard 
algebra problems easier, faster, and more intuitive.

 

1   Rectangular form!
2   Magnitude also goes by the name modulus, and the angle is also called the 
argument. 

3:00-end

Real

Imaginary

1 2 43

1

2

3

4

4+3i
4+3i = 5 36.9˚5

36.9˚

Polar Form
Rectangular 

Form

Magnitude or 
Modulus

Angle or 
Argument

i 2=-1

Figure 28 | Two ways to write complex numbers. We can write complex numbers 
in rectangular or polar form.



43

Discussion

7.1 The main idea of this section is that there are 
two very different, but completely equivalent methods 
we can use to multiply complex numbers. How could 
such seemingly different approaches can yield the 
same exact results?

7.2 Can you think of an example where using the po-
lar form of complex numbers would make life easier?

7.3 Why do you think it took over 200 years for the 
connection between complex multiplication and the 
complex plan to be discovered?

Drill
Convert to polar form:
7.4 1+i

7.5 2-3i

7.5 

Convert to rectangular form:
7.6  

7.7 

7.8 

7.9 

Critical Thinking
Solve these suckers:
7.10 (1+i)(1+i)

7.11 

7.12 How are 7.10 and 7.11 related?

Exercises 7



44 Exercises 7

Convert to polar form, solve, and convert your 
answer back to rectangular form. For extra 
credit draw a pretty picture that shows what's 
happening.1
7.13 

7.14 

7.15 

1  Each problem is worth 1 extra credit point. 5 extra credit points my be con-
verted into 1 cool point at the discretion of the point holder. Upon achieving 3 
cool points, demand some type of prize from your teacher/professor/friends/
family members. Be persistent. 

7.16 (1+i)(1+i)(1+i)

7.17 (1+i)(1+i)(1+i)(1+i)

7.18  

7.19  
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Challenge

In school you may have been required to 
memorize some formulas like these:

Since memorization is basically the worst thing 
ever1, let's try to find a way to never have to 
memorize these formulas again. 

7.20 Let's begin by considering two complex 
numbers, each with a magnitude of 1: 

To make things a little more visual, let's say our 
two complex numbers look something like this 
on the complex plane:

In terms of  and , compute the product:   

and add it to the plot above in the generally 
correct location. 

1  Memorization does not equal learning!

7.21 Convert to rectangular form using sin and 
cos:

a) 

b) 

c) 

7.22 Substitute your answers from 7.21 into2:

Expand and simplify your result.  

7.23 Derive Equations 1 and 2 by equating the 
real and imaginary parts of each side of your 
result to 7.22. 

7.24 Derive Equations 3 and 4 by considering 
the special case where  = .

2  This is hopefully the equation you obtained in 7.20!

Real

Imaginary

(1)
(2)
(3)
(4)
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Part 8: Math Wizardry

Let’s solve a simple equation: 

What value of x would make this equation work?
If you said 1, great job, 13=1. We’ve found one answer. 

Now, are there any more answers?
Way back in part one we introduced the Fundamental 

Theorem of Algebra, which says that a polynomial must 
have as many roots1 as its highest power. We can rear-
range our equation as x3-1=0 to make it a more obvious 
polynomial, and since our highest power2 is 3, this equa-
tion must have 3 solutions. 

There is a way to find all three answers without using 
complex numbers along the way, but it involves perfect 
cube factoring and the quadratic formula – and takes like 
7 steps. 

Instead, let’s try to solve the problem visually using the 
complex plane. Our question, in words, is: what numbers, 
when multiplied by themselves 3 times, equal 1? 

Let’s think about this problem using the polar form of 
complex numbers we discussed last time. We can think 
about 1, in the complex domain, as a number with a mag-
nitude of 1, and an angle of zero. Or 360.3

When we multiply numbers in the complex domain, 
their magnitudes multiply and their angles add. Our 
result should have a magnitude of 1, since 1 times 1 times 

1   AKA Solutions. Aka Zeros.
2   AKA Degree
3   or -360, or -720, 720, or 1080, or if you’re up to it, 360*n, where n an integer. 

(15)

1 is...14,  if we give each our x’s a magnitude of 1,5 our 
resulting magnitude will work out to 1 – easy. But what 
about our angles? 

We know that when multiplying complex numbers, 
our angles add, so we need an angle, that when added 
together 3 times gives 0.6 Or 360. 360 seems a little more 
reasonable, so what’s the correct angle here?

Well, since we’re dividing 360 into three even parts, 
the right answer here is 360 divided by 3, or 120°. When 
we put this together with the magnitude of 1, we have a 
second solution! It’s the complex number with a magni-
tude of 1 and an angle of 120. 

This answer makes a lot of sense on the complex 
plane:	

Multiplying our answer by itself once results in a mag-
nitude of 1 at an angle of 240°, and multiplying by our 
answer again lands us exactly where we wanted to be – at 
a magnitude of one and an angle of 360° – also known 

4   Or 1 to whatever power you want…
5   Because 1 = cubed root of 1. 1*1*1 =1!
6   This would actually yield our first answer, 1!

Figure 29 | Solving Equation 15 by factoring. We can solve Equation 15 by 
factoring, but doing it this way is hella long. And you have to remember how to 
factor the difference of perfect cubes. And the Quadratic Formula. Lame.

-1

1

1

-1

Real

Imaginary

Figure 30 | The number one. The real number one shown on the complex plane. 

-1

1

1

-1

Real

Imaginary

120

120
120

Figure 31 | A solution! Our second solution is shown in green, the complex 
number with and angle of 120 degrees and magnitude of 1. Here, we can see that 
multiplying this number by itself 3 times results in 1. 
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as...one. 
So we’ve found an answer, the complex number with 

a magnitude of one and an angle of 120°. This may seem 
like a strange answer for algebra class, so let’s put it back 
in Cartesian form. 

Our good friend the unit circle can save us some time 
here. We would like to know the rectangular coordinates 
of a point on the unit circle at an angle of 120°.1 According 
to the unit circle, our answer is -1/2 for the real part and 
√—3/2 for the imaginary part.2

Ok, so now that we have an answer in rectangular 
form, let’s try it! If we multiply out our result:

Pretty cool, right? We we’re able to solve a tough 
algebra problem visually using the complex plane, and get 
the same exact answer we obtained through factoring, as 
shown in Figure 29.  

Finally, we’ve only found two answers so far, and the 
fundamental theorem of algebra demands that we have 3. 

1   We know we’re on the unit circle because our number has a magnitude of 1
2   You could also use  a 30/60/90 special right triangle or sin and cosine…x = 
1*cos(120), y=1*sin(120). 

We find our missing answer going the other way around 
our circle. If we start at negative 120 and multiply our 
number by itself 3 times, we also land at the purely real 
number one. So our missing answer is -1/2-(√—3/2)i.3

So we’ve found all the answers to our problem x3=1, 
and shown how the complex plane allows us to find these 
visually. In this case, using complex numbers saved us 
some time over the algebraic approach – and for more 
complicated problems, the complex plane becomes even 
more useful. For example, what if we change the power 
in our original problem to say 8? That is x8-1=0. We 
could try to factor this4 – or just have a quick look at our 
complex plane and realize that, just like our last problem 
where we needed to divide the unit circle into 3 equal 
portions – we need to, in this case, divide our circle into 8 
equal portions – so our solutions need to be at 45°, again 
along the unit circle. All 8 answers. Done.5

Next time we’ll show how imaginary numbers are the 
missing puzzle piece that make algebra complete. 

3   Notice that our 2 complex roots are complex conjugates, this will always be 
the case when our polynomials have real coefficients.
4   (x^4-1)(x^4+1)= (x^2-1)(x^2+1)(x^4+1)= (x-1)(x+1)(x^2+1)(x^4+1)=0...

5   One solution would be √—2/2+(√—2/2)i. This is called an nth root of unity 
problem and has lots of cool applications, like the Fourier Transform! 

(-1,0)

Figure 32 | Your BFF the unit circle. Yeah, it’s kind of a big deal. Today it’s going to 
help us convert between polar and rectangular coordinates. 

-1

1

1

-1

Real

Imaginary

-120
-120

-120

Figure 33 | Our final solution to x3=1. We find our final solution, the complex 
number with a magnitude of 1 and angle of -120, by moving clockwise around 
our circle in three equal steps. 
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Discussion

8.1 Why must the equation x3=1 have 3 solutions?

8.2 How does the complex plane make tough prob-
lems easier?

8.3 Why to you think the mathematician Jacques 
Hadamard wrote:

"The shortest path between two truths in the real 
domain passes through the complex domain."

-Jacques Hadamard, ~1945

Drill
Answer in rectangular form:
8.4 (1+i)6

8.5  (1 + i√—3)6 

8.6  

8.7  √—i

8.8  

8.9  

Exercises 8
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Critical Thinking

Let's say we're given a given complex number with a 
magnitude1 of 1, and an angle2 of . We can convert 
our number to rectangular form as follows:

8.10 Using a picture, show why the above equation is 
legit. 

Now let's consider what happens when we raise our 
number to various powers. Write each answer in 
rectangular form, using sin, cos, and .3 

8.11 ( )2

8.12 ( )1/3

8.13 ( )n

1  or modulus
2  or argument
3  Feel free to explain you answer with a picture for one extra credit point per 
problem.  

Your answer to 8.13 should be something like: 

This is known as de Moivre's theorem.4 Note that the 
right side of the equation is sometimes abbreviated 
using cis: cis(x) = cos(x) + isin(x). De Moivre's 
theorem can be expanded to numbers that have 
magnitudes other than 1 without too much headache. 
Let's say we're given some complex number with a 
magnitude or r and an angle of . We can convert our 
number to rectangular form as follows

8.14 Using a picture, show why the above equation is 
legit. 

Now let's consider what happens when we raise our 
new number to various powers. Write each answer in 
rectangular form, using r, sin, cos, and . 

8.15 ( )2

8.16 ( )1/3

8.17 ( )n

4  Although it never shows up in his work...makes sense...
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Way the heck back in Part 4 (Exercises 4.14-4.21), we 
discussed how Bombelli solved Cardan's problem by 
allowing imaginary numbers to exist. A key part of 
Bombelli's argument was this rather shocking fact:

Now, with the help of the 200+ years of mathematical 
advancement we've covered since Part 4, we'll show 
that the above equation is must be true without break-
ing a sweat! This is remarkable when we consider how 
much trouble this equation gave Cardan and Bombelli. 

8.18 To begin showing that the above equation is true, 
convert these two parts of the equation to polar form. 
Round your answers to 4 decimal places. 

a) 2 + √—-121

b) 2 - √—-121

8.19 Using your results from the previous page, 
compute the cube root of your answers from 
8.18, and convert your results to rectangular 
form. 
a) 

b) 

8.20 Add together your answers to 8.19 a and b. If 
your result is 4, nice job! Think about how im-
pressed Cardan and Bombelli would by your math 
wizardry. If you're answer isn't 4, check out the 
solutions in the back of the book.

Challenge

The brilliant mathematician Gottfried Wilhelm 
Leibniz (1646-1716), co-father to calculus, is known 
to have struggled deeply with the topics we're cov-
ering here. 

"I do not understand how...a quantity could be real, 
when imaginary or impossible numbers are used to 

express it."

-Leibniz

After his death, Leibniz's unpublished work re-
vealed that he calculated some special cases of Car-
dan's formula again and again, presumably looking 
for deeper insights like the ones that have been 
handed to us. In solving the cubics x 3=13x+12 and 
x 3=48x+72 using Cardan's formula, Leibniz discov-
ered that: 

and:

8.21 Show that the two equations above are true. 
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Part 9: Closure

Before we finish up the series and solve our problem 
from part one, let’s talk about how complex numbers are 
the missing puzzle piece that make algebra complete. 

Back in part two we saw how the definition of what 
a number is has evolved over time, beginning with the 
natural numbers. The Egyptians figured out that these 
numbers were missing something1, and it’s pretty obvious 
to us today that the natural numbers are incomplete. 

However, as we saw with complex numbers, it’s not 
always obvious when our numbers are missing something. 
Fortunately, there is a more sophisticated way to deter-
mine if we have all the types of numbers we need – the 
mathematical idea of closure. 

Let’s play a game. I’ll give you a set numbers, and an 
algebraic operation. I want you to tell me if any two num-
bers in the set, when combined with the operation, give a 
number not in the set. 

Our first set is the natural numbers and our operation 
is addition. 

So the question is: are there any two natural numbers 
that when added together, produce something that is not a 
natural number?

After a little noodling, it should seem pretty reason-
able that any two natural numbers, added together, result 
in another natural number. Mathematically, we can say 
that the set of natural numbers is closed under addition. 

Next, let’s try the set of natural numbers and the oper-
ation of subtraction. 

For some pairs of natural numbers, like 6 and 4, things 
work just fine – 6 minus by 4 is 2, which is a natural num-
ber. But what about 2 minus 6? This results in an answer 
that is nowhere to be found in our set of natural numbers, 
so our set is not closed under subtraction. We need to 
expand our set to include zero2 and negative numbers for 
this to be the case. 

1   Fractions!
2   Because, for example 3-3=0. 

So the set of natural numbers is not closed under 
subtraction, but the set of all integers is. By expanding our 
number system, we can guarantee that any subtraction 
question we can ask will have an answer.

As we include more algebraic operations, we must 
continue to expand our number system. Division requires 
us to expand our number system to include fractions – 
also known as rational numbers. Rational comes from 
the word ratio3 – rational numbers are numbers can be 
expressed as the ratio of two integers.4

We can show the relationship between the numbers 
we’ve covered using another invention of Euler’s.5 Using 
an Euler diagram,6 we can visually express the idea that 
one set includes another – all integers are rational num-
bers, because we can always express them as a ratio of two 
integers, but not all rational numbers are integers. 

Let’s recap. So far we’ve made it to rational numbers, 
which includes numbers like 1, 0, -5.1, and -2/3. What 
operations are the rational numbers closed under?

Well, any two rational numbers added together yield 
another rational number, so we can say that rational num-
bers are closed under addition. We can say the same for 
subtraction, multiplication, and division.7

3   Which comes from the Greek word logos, which means word! Word. 
4   Like 2/3
5  His other invention we’re making use of is the notation i = √—-1.
6  These are basically more flexible Venn diagrams.
7   With the notable exception of dividing by 0 – this is a new can of worms….
called calculus.

SET OF NUMBERS OPERATION
Natural: 1, 2, 3... +

Figure 34 | Are the natural numbers closed under addition? 

SET OF NUMBERS OPERATION
Natural: 1, 2, 3... -

Figure 35 | Are the natural numbers closed under subtraction? 

NUMBERS SYMBOL EXAMPLES CLOSED UNDER

Natural 1,2,3... +

Integers ...-2, -1, 0, 
1, 2... +, -

Table 8 | Closure under subtraction. To ensure we can handle all subtraction 
problems, we must expand our number system to include integers. 

RATIONAL NUMBERS

NATURAL NUMBERS
1, 2, 3...
INTEGERS
...-2, -1, 1, 2, 3...

1.2, -5/2, 0.08...
Figure 36 | Relationship between natural numbers, integers, and rational numbers. 
All natural numbers are integers, but not all integers are natural numbers.
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Now, what about powers and roots? Does a rational 
number raised to a rational power always yield a rational 
result?

It turns out that for problems like (2/9)2 this is no 
problem – our result is rational.1 Where we get into trou-
ble is things like (2)1/2. Raising something to the power of 
1/2 is the same thing as taking the square root, so this is 
equivalent to √—2. We’ll save the full argument2 for another 
day, but it turns out that √—2 is not rational – there are no 
two integers, that when divided, equal exactly √—2. Since 
numbers like this are not rational, we give them the name 
irrational. 

There’s one more class of numbers that are even cooler 
than irrationals - the transcendental numbers like π and 
e, we’ll also save these for another day. 

So, we’ve expanded our number system again to in-
clude irrationals, and all these numbers, taken together, 
form what we call the real numbers. 

Let’s play our game one more time. Our set is now the 

1  (2/9)2 =(4/81), which is hella-rational! 'Hella' is a super fun word 
I learned while at graduate school in northern California, I think it 
means something like "really". Use hella in a conversation for 1 extra 
credit point.
2   It’s pretty cool, it means there are holes in the rational number line! See 
exercise 9.19.

real numbers, and our operation is taking roots. Do we 
have closure? Are there any real numbers, that when we 
take some root, yield a result that is not a real number?

The answer is, that despite all the types of numbers 
we’ve included along the way, we’re still missing some-
thing. We can write an expression only using real num-
bers and roots – for example, √—-9, that has no solution in 
the real numbers. 

For this problem to have an answer, we must expand 
our number system once more to include imaginary 
numbers. And taking all our real numbers from before, 
together with imaginary numbers, we arrive at our broad-
est class of numbers – the complex numbers. 

SET OF NUMBERS OPERATION
Real: 

Figure 38 | Are the real numbers closed under roots? Time for one last round of 
everyone’s favorite game. 

RATIONAL NUMBERS

NATURAL NUMBERS
1, 2, 3...
INTEGERS
...-2, -1, 1, 2, 3...

1.2, -5/2, 0.08...

IRRATIONAL NUMBERS

TRANSCENDENTAL NUMBERS

REAL NUMBERS

Figure 37 | The real numbers. The real numbers are an inclusive group! Real 
numbers include the natural numbers, integers, rational numbers, irrational 
numbers, and even transcendental numbers. But it still feels like we’re missing 
something...

RATIONAL NUMBERS

NATURAL NUMBERS
1, 2, 3...
INTEGERS
...-2, -1, 1, 2, 3...

1.2, -5/2, 0.08...

IRRATIONAL NUMBERS

TRANSCENDENAL NUMBERS

REAL NUMBERS

COMPLEX NUMBERSIMAGINARY NUMBERS i, 2i, -i/2...

Figure 39 | Finally. All the numbers we need to answer any algebra question we can think of using addition, subtraction, multiplication, division, powers and 
roots. Complex numbers are closed under all algebraic operations.

NUMBERS SYMBOL EXAMPLES CLOSED UNDER

Natural 1,2,3... + x ()x

Integers ...-2, -1, 0, 
1, 2... + - x

Rational .4, 1/2, -16 + - x ÷

Real .4, √—2, 1/2, 
π, 51 + - x ÷

Complex √—2, .5, π, 2i + - x ÷ √—  
()x

Table 9 | Closure. Expanding our number systems to include closure under more 
algebraic operations.
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Initially, mathematicians were concerned that even 
complex numbers were not sufficient – that problems like 
√—-i would result in an even more “complex number” – 
perhaps even a three dimensional number, instead of our 
two-dimensional complex numbers. 

Fortunately, this turned out not to be the case. In fact, 
we can evaluate √—-i, again using our good friend, the 
complex plane. Since -i has a magnitude of 1 and an angle 
of -90°, we just need a number with a magnitude of 1 and 
an angle of -45°, according to the unit circle, √—2/2-(√—2/2)
i. 

So the square root of negative i is just another complex 
number - there’s no need for some wild new three-dimen-
sional number. In fact, there’s no operation in the world 
using addition, subtraction, multiplication, division, pow-
ers, and roots that the complex numbers can’t handle.1 

Imaginary numbers are the exact missing piece that 
make algebra complete. 

1   Except dividing by zero – this leads us to calculus. 

4:25-end

Figure 40 | The Complex numbers are closed under the operations we care about. 
Even crazy sounding problem like √—-i result in complex numbers. As long as we 
stick to multiplication, division, addition, subtraction, powers, and roots, there’s 
no need for some crazy, “more complex” number. 



55

Discussion

9.1 What is mathematical closure?

9.2 Why might closure be important for scientists, 
engineers, and other people who use mathematics?

9.3 The real numbers seem pretty complete. What 
evidence do we have that indicates this is not true?

 
Drill

Time for a few more rounds of the closure game! 
Determine if the set is closed under the given 
operation. If the set is not closed, provide a counter-
example.

9.4 Integers, multiplication. 

9.5 Integers, division. 

9.6 Real Numbers, division.

9.7 Irrational Numbers, addition. 

9.8 Irrational Numbers, multiplication. 

9.9 Transcendental Numbers, subtraction. 

9.10 Imaginary Numbers, multiplication. 

9.11 Integers, powers.

Exercises 9
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Critical Thinking

The idea of mathematical closure can be applied 
to sets beyond those we've discussed thus far. For 
example, let's consider the set of all even numbers 
(just in case you forgot, 0 is even). 

9.12 Are the even numbers closed under addition? 
What about subtraction? For 1 extra credit point, 
prove that your answer it true for any two even 
numbers. 

9.13 Are the even numbers closed under 
multiplication? What about division?  For √—2 extra 
credit points, prove that your answer is true for any 
two even numbers. 

9.14 Under what algebraic operations are the odd 
numbers closed?

Consider the completely made-up operation: 

Λ(a,b) = (a + b) modulo 4

Where modulo 4 means the remainder after dividing 
by four. For example, 9 modulo 4 = 1, because 4 goes 
into 9 twice, leaving a remainder of 1. Numbers less 
than 4 remain unchanged, for example, 3 modulo 4 = 
3.

9.15 Show that Λ(5, 3) = 0, and  Λ(2, 1) = 3.

9.16 Is the set {1, 2, 3, 4} closed under Λ?

9.17 Name a set that would be closed under Λ. 
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Challenge

Using the kick-ass polar form of complex numbers we  
learned back in Part 7, solve the problem below and 
confirm that results belong to the set of Complex 
Numbers. 

9.18 (-i)1/6

9.19 √—2 is irrational. This means that √—2  cannot be 
expressed as a ratio of two integers. This fact didn't 
fit so well with the orderly world view of the ancient 
Greeks, and legend has it even lead to the murder of 
Hippasus of Metapontum. Let's prove this dangerous 
fact by contradiction. To do this, let's assume, as 
the Greeks did, that √—2 is rational. If √—2 is rational, 
then we can write √—2 = m/n, for integers m and 
n, and let's say that m and n make our fraction in 
lowest terms - so they have no common factors. 

a. Square both sides of our equation √—2 = m/n, and 
show how we can conclude from our result that m 
must be even. 

b. Since m is even, let m = 2k, for some integer k. 
By plugging in 2k for m into your result from part 
a, show that n must also be even.  

c. Why can m and n not both be even?

Since m and n cannot both be even, we've reached a 
contraction, indicating that our original assumption, 
that √—2 is rational must be false, leaving us with the 
inevitable fact that √—2 is irrational. 
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So…what the heck is going on in Figure 2?
We saw this shape in part one and then proceeded to 

not talk about it for like ten chapters. And at this point, 
I wouldn’t really blame you if you thought this was some 
science fiction designed to get you excited about doing 
boring algebra problems. 

But before we chalk this up to unnecessary special 
effects,1 let’s remember where this shape came from. We 
began our conversation in part one with an equation that 
appeared to have no solution: x2+1=0. 

After all the work we’ve done so far, you can probably 
to see how to find the answer algebraically: subtract one 
from both sides and take the square root, resulting in x=i 
and x=-i, done. 

So that’s cool, but to really make sense of our shape 
from part one we need to dig a little deeper, and talk 
about functions of complex variables. 

The kinds of functions most of us are used to, func-
tions of real numbers2, have inputs and outputs that can 
each be visualized using a single dimension. This means 
that all our x values fit on a single number line, and so do 
our y values. It seems pretty reasonable then3, that if we 
want to figure out how x and y are related, we should put 

1   Transformers, anyone?
2   AKA Real-valued functions
3   Although no one figured this our until Descartes and Fermat in the 17th 

our x number line facing one way on a piece of paper, and 
put our y number line one the same piece of paper, just 
facing the other way. This forms a two-dimensional grid 
known as the Cartesian coordinate system. 

Apparently invented by Rene Descartes in the 16th cen-
tury after watching flies crawl around, the Cartesian coor-
dinate system is a super powerful tool for understanding 
the relationship between two variables.

The Cartesian coordinate system is powerful because 
it allows us to take abstract ideas, like functions, and turn 
then into something our brains can grasp much more 
intuitively – shapes. By giving each point on the plane 
its very own coordinates, Descartes was able to bring 
together the two largest areas of mathematics at the time: 
algebra and geometry. This greatly aided early efforts at 
classifying functions by Isaac Newton and others, and 
today the Cartesian coordinate systems shows up every-
where; helping us do all kinds of things, like spot trends 
in data. 

So that’s all fun and wonderful – but the Cartesian 
coordinate system does come with a disclaimer.

It only works in 2 dimensions.4 

century. 
4   Well, also 3, we’ll get to that. 

Imaginary Numbers Are Real 
Part 10: Complex Functions

a b

c d

Figure 2 | Graph of f(x) = x2+1 where x includes imaginary numbers. Panels 
a-d show "pulling" the function out of the page.

Figure 41 | Solving Our Equation From Part One. After all the work we've done so 
far, this isn't so bad.

x1 2 3-3 -1-2

1

2

3

4

-1

y = f(x)

Figure 42 | It's easy to take the cartesian coordinate system for granted. Placing our 
x and y number lines at a right angle to each other like this is not obvoius! 

y

x!
DISCLAIMER
Only works for 2 dimensions

Figure 43 | Limits of the Cartesian Coordinate System. It only works in two 
dimensions :(
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This limitation becomes a real problem when we start 
to think about functions of complex variables. 

These functions take in complex numbers for inputs, 
and for the most part, also output complex numbers. This 
means the numbers we put in and get out of our function 
no longer fit on number lines. We now need two complex 
planes to keep track of our numbers: one for our input, 
one for our output.

This raises an important question – if, when visualiz-
ing these functions, what we’re really interested in is the 
connection between the input and the output, how do we 
visualize what’s happening on both planes simultaneous-
ly?

We could try to fit our input and output planes to-
gether somehow, as we did with our number lines for 
real-valued functions, but we quickly run into a pretty 
serious issue. As you likely know, the universe we live in 
has1 three spatial dimensions – so there’s no way to fit the 
four spatial dimensions we need into a single structure 
that our brains can comprehend – we simply run out of 
dimensions.

Fortunately, there are some very clever ways to see the 
relationship between two complex variables – but before 
we can get to these, we need to think about the mathemat-
ics of complex functions.

Even though using separate planes for our input 
and output is not a perfect solution, this approach can 
still help us get started. Let’s try it out with our original 
function, f(x)=x2+1. Before we begin, let’s make a quick 
variable name change make things easier down the road. 
We’ll change the name of our input variable from x to z,2 
and call our output variable w. Since z and w each have a 
real and imaginary part, let’s go one step further and give 
these parts names – we’ll let z = x + iy, so x and y repre-
sent the real and imaginary parts of z,3 and we’ll let w = u 
+ iv.

Just as we can use tables to keep track of our inputs 
and outputs for real-valued functions, we can also make 
tables to keep track of the inputs and outputs of complex 
functions. However, we now need four columns to keep 
track of our four variables: x, y, u, and v. 

We can now experiment with our function: 
f(z)=z2+1. If we plug a complex number into our func-
tion, for example z equals 1+i, we can do a little algebra 

1   Probably.
2   Many resources use x to denote a real number, and z for a complex number. 
I have no idea why. 
3   Respectively.

and obtain our result: 

Plotting our inputs and outputs, we see that the point 
1+i on our input z-plane was pushed, or mapped, by our 
function to 1+2i in our output w-plane.

Let’s plug in a few more points to see if we can find a 
pattern. If we test points along a straight line in our input 
space, we see that in our output space, our straight line is 
transformed into a curved line, as shown in Figure 46. 

Now, as you can imagine, plugging in points like this 
can get pretty tedious. To speed things up, let’s get a com-
puter do it for us. And instead of having our computer just 
map certain points – let’s have it map…all the points.4 

We’ll take advantage of the fact that the images are 
just collections of pixels that happen to be arranged on a 
grid.  We’ll use some code written in the programming 
language python to move every single pixel in an input 

4   ALL THE POINTS!

1 2 43-4 -3 -1-2
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2

3

4

-1

-2

-3

-4

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

Inputs Outputs

Real Real

Imaginary Imaginary

Figure 44 | A Tale of Two Planes. To keep track of the inputs and outputs of a 
function of complex variables, we need two complex planes. 

w = f(z) = z2+1
z = x + iy
w = u + iv

(16)

y

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

x

z

v

1 2 43-4 -3 -1-2

1

2

3

4

-1

-2

-3

-4

u

w

Inputs Outputs

1+i
1+2i

f(z)

Figure 45 | Mapping. One way to visualize our complex function, f(z)=z2+1, 
is by following how individual points are mapped from the input to 
output plane. 
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image to its proper location in an output image.
To make this work, we’ll assign each pixel in our input 

video a complex number that corresponds to its location 
on the complex plane. We can then let our code take care 
of the tedious work of moving each pixel to its new loca-
tion, as dictated by our function, z2+1.

Our code will move points exactly as we did by hand 
before - if we have a blue pixel at the 1+i location on our 
input graph, this blue pixel will be moved to the 1+2i loca-
tion on our output graph, because f(1+i) is equal to 1+2i. 1  

We saw before that our function warped a straight 
horizontal line into a curvy one, so it should have some 
interesting effects on our video. We’ll include some ref-
erence markers on top of our input and output planes to 
keep track of our numbers, but we won’t transform these 
pixels.

Alright, ready?
Let’s start by drawing some simple lines in a grid. In 

our output plane we can see that our family of straight 
lines is turned into a family of curved 
lines. Cool, right?2

So we’ve found a pattern, but how is 
this pattern explained by our function 
z2+1? And more importantly, how does 
this fit with everything else we’ve learned 
about complex numbers? 

What else would be interesting to 
draw in our input space to test our 
mapping? What shape would you draw 
to learn more about what our function is 
doing?

Next time, more shapes. 

1   Python code available on github.
2   Notice that the angles between our lines have been preserved! This means 
our mapping is conformal.  

5:20-end

y
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x y u v
z w

1   1   1   2
-2   1   4  -4
-1   1   1  -2
 0   1   0   0
2   1   4   4

Figure 46 | Straight Lines Get All Curvy. If we map points along a straight line in our input space, the result is a curved line in our ouput space!

Figure 47 | Every point gets a number.  To map all the points in the left image, 
we'll assign each pixel a complex number that corresponds to its location on the 
complex plane. Our code will then take care of the tedious work of mapping each 
pixel to its proper location on the output plane.

Figure 48 | Mapping an Entire Image.  Here we've mapped all the points on our z-plane to the w-plane.
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Discussion
10.1 Why is the Cartesian Coordinate System so 
freaking cool?

10.2 Why are functions of complex variables so 
freaking hard to visualize?

10.3 What is the maximum number of dimensions 
the Cartesian Coordinate System will work in? 
Why?

10.4 What shape would you draw on the left plane 
of Figure 48 to better understand what our func-
tion, f(z)=z2+1, is doing? 

 

Drill
Let g(z)=z2+2z. Calculate the following:

10.4 g(1)

10.5 g(i)

10.6 g(1+i)

10.7 g(1-i)

Let h(z)=z3+iz. Calculate the following:
10.8 h(1)

10.9 h(-i)

10.10 h(1-i)

10.11 h(2+2i)

Exercises 10
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Critical Thinking

10.12 The Cartesian Coordinate System is so 
common today, it's easy to forget just how useful 
and non-obvious it is! Let's consider an example.	

You and your friend Gus are planning a murder 
in a quiet beach town.You and Gus agree to 
hide the body in a cave located off Sunset Bay. 
However, there's a small problem. The cave can 
only be accessed at low tide. Being thorough pre-
meditators, you and Gus devise a plan to predict 
exactly when low tides will occur, allowing you to 
schedule the perfect murder. Over the course of 
the days leading up to the Murder, Gus records 
the water depth at Sunset Bay every two hours. 
Check out Gus's data over there ----------------->

a) The morning of the Murder is here! You and 
Gus pour over his notebook, trying to find the 
perfect time to commit the act and hide the body. 
Based on the data alone, (without drawing any 
pictures) when do you think You and Gus should 
hide the body?

b) Gus is NOT happy with your answer to part 
a. Let's use the Cartesian Coordinate System 
to convince Gus. Using the grid below, plot the 
water depth and time of day.  

c) Based on your plot, when should you hide 
the body? Did you answer to part a and b 
match? Which method is more convincing? What 
advantages might using the Cartesian Coordinate 
System have?

Time (2 days 
before murder) Water Depth (m) Time (day 

before murder) Water Depth (m)

12:00 AM 2.16 2:00 AM Gus Fell Asleep

2:00 AM 1.95 4:00 AM 0.29

4:00 AM 1.35 6:00 AM 0.77

6:00 AM 0.59 8:00 AM 1.33

8:00 AM 0.30 10:00 AM 1.81

10:00 AM 0.20 12:00 PM 2.26

12:00 PM 0.77 2:00 PM 1.85

2:00 PM 1.34 4:00 PM 1.27

4:00 PM 1.89 6:00 PM 0.51

6:00 PM 2.07 8:00 PM 0.07

8:00 PM 1.96 10:00 PM 0.17

10:00 PM 1.43 12:00 PM 0.60

12:00 AM 0.66
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Figure 46 shows how one line was transformed from straight to curved by our function f(z)=z2+1. In the exercises 
below, we'll experiment with mapping other shapes. For each exercise complete the table using f(z)=z2+1, plot the 
input and output points, and speculate wildly about what exactly happened to the input shape. 

Exercise Table Input Plane Output Plane
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Challenge

10.17 a) Using Equation 16, draw curves/lines 
on the z-plane to the right where u = 0. 

b)Using Equation 16, draw curves/lines on 
the z-plane to the right where v = 0. 

c)What do your curves from parts a and b 
tell you about the zeros of f?

w = f(z) = z2+1
z = x + iy
w = u + iv

(16)
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Last time, we left off trying to think of shapes to draw 
on our input plane that would help us better understand 
our function, f(z)=z2+1. 

Since z2 means multiply z by itself, and z is a com-
plex number – our function’s behavior should have some 
connection to complex multiplication. Back in part seven 
we saw that one way to interpret complex multiplication 
is as a rotation and scaling of our input values – when we 
multiply two complex numbers together, their magnitudes 
multiply and their angles add.

So the z2 part of our function should take our complex 
number, z, square its distance to the origin and double its 
angle. The plus one portion of our equation is a little less 
exciting - adding a positive real number will move all our 
points in the positive real direction, so to the right, in this 
case by one. Since this shift to the right doesn’t affect the 
behavior that we’re interested in, we’ll leave it out of our 
equation for now. 

Let’s test the idea that our function will double the 
angle of its input values. What kind of shape should we 
draw to test this idea?  

Ideally, we want to draw a shape that is made up points 
that are all at the same angle, to see if our function chang-
es all points of the same angle in the same way. 

So what kind of shape is made of points all at the same 
angle?

This turns out to be a straight line through the origin. 
If we draw a few green lines through the origin as shown 
in the left pane of Figure 50, we see that the outputs are 
also straight lines, at what looks like double the angle! 

So we’ve shown that our transformation doubles the 
angle of our input values – now what about the magnitude 
our inputs? We said earlier that when squaring a complex 
number, the magnitude of the complex number should 
also be squared. So the distance to the origin from our 
input points should be squared in our mapping.1 

1   Just don't forget that numbers<1 get smaller when squared!

Imaginary Numbers Are Real 
Part 11: Wandering in Four Dimensions

Real

Imaginary

A

C
B

C
A

B

A B C+ =
A.B=C

Figure 49 | Complex Multiplication. When we multiply two complex numbers, 
thier angles add and distances to the origin multiply. 

Figure 50 | Mapping Pixels According to the Function f(z)=z2+1. By carefully choosing the shapes we draw on z, we can learn more about our complex function. Here 
we see that quarter circles are mapped to half circles with different radii, and lines through the origin are mapped to other lines through the origin with larger angles. 
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What kind of shape should we draw to test this idea? 
We want to test magnitude alone – so it would be nice to 
have a shape with a constant magnitude. What kind of 
shape has the same magnitude, or distance to the origin, 
everywhere?

This shape we need now is exactly a circle! If we add 
sections of a few circles to our picture as shown in Figure 
50, we see that these result in new circle sections – but 
now at different distances to the origin. So as we expected, 
our circles are preserved, but their radii are changed. 

So now we’re really getting somewhere – by carefully 
choosing our input shape, we we’re able to better under-
stand exactly what our function does to complex num-
bers. 

Wonderful. 
But before we celebrate, let’s keep a couple things in 

mind. For one, we’re dealing with a really simple function. 
And secondly, even for this simple function – we can still 
run into trouble with our two complex plane setup. 

For example, we know that our mapping doubles the 
angle of the input points. This is fine, until we use up too 
much of our input space. If we continue the circles we 
started earlier – once we arrive at 180 degrees1, we begin 
to see a problem. 

Our shapes have been expanded to fill up the entire 
output space, but we’ve only used half the input space!

1   AKA pi. 

As we continue our circles, our new points have no-
where to go except directly on top of our old points. This 
makes sense algebraically - because of the way squaring 
works, points like 1+i and -1-i will map to the same exact 
output value:

So it’s not that our function is broken or anything – 
it’s just that the technique we’re using to visualize it can’t 
really handle multiple values being mapped to the same 
location on the output plane – after all – which pixel 
should we display, the one at the 1+i location, or the one 
at the -1-i location?

Mappings like this create problems in mathematics, 
although typically in the reverse direction. The reverse of 
a function, where our inputs become outputs and outputs 
become inputs, is called the inverse. The inverse of our 
function is pretty straight forward to find – we simply 
need to solve our equation for z: 2 

2   Note, we’re adding the plus or minus here for clarity, some resources omit it 
and take root(z) = +/- root(z), and some use the 1/2 power as an alternative to 
represent specific parts of the function. 

Figure 51 | Out of Room! If we continue our circles on the z-plane, our mapped 
circles have no where to go on w, except directly on top of our other points.

f(1+i) = (1+i)2

	 = (1+i)(1+i)
	 = 1 + i + i + i 2 

	 = 1 + 2i - 1
	 = 2i

f(-1-i) = (-1-i)2

	 = (-1-i)(-1-i)
	 = 1 + i + i + i 2 

	 = 1 + 2i - 1
	 = 2i

1+i
-1-i

2i

Figure 52 | Double Trouble. Two input points map to a single output point, 
meaning the bottom left part of our circle ends up directly on top of the upper 
left part. Not cool. 

(17)
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We now we run into the real math problem. 
Our inverse function represents the same exact con-

nections as our forward function, just in the opposite 
direction. So our two inputs that mapped to the same 
output are now a single input that maps to two outputs. 
The w value of 2i maps to both z=1+i and z=-1-i. This 
mapping from a single input to multiple outputs is a big 
enough problem that our function’s inverse to not even 
technically considered a function – the definition of a 
function requires that each input be mapped to one and 
only one output. 

To make things nice and confusing, non-functions 
like this are called multi-functions. So our mapping is the 
same in either direction, but taken from z to w is consid-
ered a function, but from w to z is considered a multifunc-
tion.

Let’s experiment with our multifunction. When we 
draw shapes on our w-plane, our shapes are duplicated 
and shrunk own onto our z-plane: Our shapes are copied because each point in w is 

mapped to two points in z, and shrunk because the square 
root function takes the square root of the magnitude of 
our w values and divides each angle by 2. 

Let’s experiment with one more type of shape – a path. 
We’ll pick a starting point on our w plane, wander around 
for while, and return to where we started. By following the 
paths on both our w and z-planes, we can get some idea 
of what happens as we wander around the 4-dimensional 
space of our complex multifunction.

Our blue path returns us right back to where we start-
ed on both the z and w-plane. No surprise there. But if 
change our path a little, something weird happens. 

Along our green path, our w path returns to where we 
started, but our z paths…don’t.
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Inverse Multi-Function

2i
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Figure 53 | Our Function and Its Inverse. We can think about our mapping in two ways, 
left to right or right to left. 

Figure 54 | Double Trouble for Realsies. When we draw on our w-plane, and map 
our pixels to our z-plane, we end up with 2 copies of our drawing!

Figure 55 | What the heck? Our blue path ends up right where it started...but our green path jumps! What's going on here?



69Part 11: Wandering in Four Dimensions6:01-end

Somehow our z values somehow jumped to a whole 
new part of the plane! Somehow we’ve wandered our way 
into a completely new part of our multifunction. 

So it seems that some paths on w lead us back to where 
we started, but others don’t. What could be going on here? 
How is the complex landscape of our multifunction tak-
ing such similar paths in such different directions? 

One reason I like math is that, for many problems,1 
someone much smarter than me has already given them 
some serious thought, and quite often found an elegant 
solution. 

In this case, that person was one of Gauss’ students - 
Bernhard Riemann. We’ll discuss his solution next time. 

1   But certainly not ALL problems!

Bernhard Riemann
(1826-1866)

KIND OF 
A BIG 
DEAL

Figure 56 | Bernhard Riemann. The work of Berhnard Riemann continues to have 
a huge impact on modern mathematics. One of his ideas on prime numbers, 
known today as the Riemann Hypothesis, remains unsolved and is so important 
to mathematics that a correct solution will earn you a cool $1M from the Clay 
Mathematics Institute.
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Discussion

11.1 Why did we choose to draw circles and lines 
through the origin in Figure 50?

11.2 In Figure 51 we run into a problem. Mutliple 
oints from our z-plane are mapped to the same 
location on our w-plane. Why does this happen?

11.3 In Figure 54, why do we end up with 2 copies 
of the shapes we draw on the w-plane?

11.4 Why do you think our paths behave so 
strangely in Figure 55?

 

Drill

Using the polar form of complex numbers we learned 
back in Parts 7 and 8, find all solutions to the the 
multifunction:  

11.5 f -1(-2i)

11.6 f -1(-1)

11.7 i

11.8 f -1(0)
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Critical Thinking

It's your turn to experiment with some paths! In each exercise below, compute the x and y values for each 
point according to the function	       , plot the input and output points, and connect consecutive points 
with a line. You may use technology. 

Exercise Table z-plane w-plane

11.9 z1 z2 w
x1 y1 x2 y2 u v
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Challenge
11.12 Explain why our paths jump in Figure 55. 
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Last time we left off wondering why some paths on our 
w-plane led us to completely new values on our z-plane, 
while others didn’t. 

Gauss’ student, Bernhard Riemann, made some 
powerful insights into problems like this in the mid-nine-
teenth century. 

The first part of Riemann’s contribution is the idea 
that, for functions like this, we need more than two 
complex planes to visualize our function. Since each point 
on our w-plane maps to two points on our z-plane, we 
can begin to resolve our ambiguity by adding a second 
w-plane, and letting each of our two points on z map to its 
very own copy of the w-plane. 

So that’s fine, but it immediately raises an important 
question: how do we pick which z values to map to each 
plane? A simple and effective approach here is to simply 
divide the z plane into two halves – we’ll let the right half 
map to our first w-plane, and our left half map to our 
second w-plane.1 These restricted versions of our multi-
function are called branches.

Let’s draw a path again, but this time just on our first 
w-plane. Things look just fine until we cross the negative 
real axis, and our path on the z-plane suddenly jumps! 

This, of course, is what must happen – we’ve required 
points from our first w-plane to only map to the right side 
of our z-plane. Almost every2 point on w has two possible 
solutions on z, and with our first branch, we’ve decided to 
always pick the one on the right.

So our path now jumps around on the z-plane, but 

1   These are called branches! We’ve made a “branch cut”
2   Which point(s) on w don’t map to two points on z?

what’s perhaps more disappointing here is that we haven’t 
gained any insight into the interesting loop behavior we 
saw last time, in fact we can’t even recreate it with these 
setup – no matter what kind of loop we draw, as shown in 
Figure 59, we always end up exactly where we started on 
both the z and either w-plane, it seems that we’ve legal-
ized this behavior out of existence. 

Further, the fact that our function jumps across the 
z-plane means that our branches are discontinuous - a 

Imaginary Numbers Are Real 
Part 12: Riemann's Solution
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Figure 57 | Riemann's Idea, Part I. The first part of Riemann's idea is to allow 
each of our two solutions on z to map to its very own copy of the w-plane. This 
does raise an issue though - which plane do we map other points, such as -1+i 
to?

Figure 58 | Crap! Since we've decided to map our first w-plane to the right side of 
our z-plane, when we cross the negative real axis on w, our path on z suddenly 
jumps!

Figure 59 | What Happened? By splitting up our function like this, we no longer 
see the cool loop behavior in Figure 55. Lame. 
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huge problem mathematically. Functions of complex vari-
ables are a big part of modern mathematics and science, and 
if our functions are jumping around like this, we can’t do 
important things like take derivatives and integrals.1 

So we’ve fixed the multi-valued problem by splitting our 
multifunction into branches, our function is now one-to-
one2, but in the process, we’ve introduced some serious 
issues - thus far Riemann’s solution is not looking so great. 

Fortunately, that was just part one, and part two is much 
cooler. 

Let’s consider our discontinuity problem in a bit more 
detail. We’ll switch back to our forward function momentar-
ily, and draw again on our z-plane. 

1   In the language of calculus or real analysis, differentiable. Or in complex 
analysis, holomorphic or analytic.
2   Every input has exactly one unique output

Let’s pay careful attention to where our discontinuities 
show up. We’ll follow the points along a single path, and 
to make sure we can tell the points of our path apart, we’ll 
continuously change its color.   

As we move from quadrant one to quadrant two on z in 
Figure 60, we switch branches. We switch back to our first 
branch when moving from quadrant three to four. For our 
function to be continuous, we need to somehow connect our 
two w-planes at the exact points where our path jumps. 

What Riemann saw here was a way to bring together our 
two complex planes in such a way that our multifunction 
would be perfectly continuous3, while maintaining the nice 
one-to-one properties of our two w-plane solution. 

To see Riemann's Solution, grab some scissors and tape, 
and check out the instructions below. 

3   And differentiable/analytic/holomorphic!
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Figure 60 | Make your own Reimann Surface!
�e great mathematician Bernhard Riemann saw a way to �t to-
gether our two w-planes in such a way that our colored path would 
be made continuous. Your job is to recreate Riemann’s idea by cut-
ting out the two w-planes to the right, and positioning/cutting/tap-
ing them into a form that will make our curve continuous. �is can 
be accomplished by making a single cut in each plane. If you suc-
ceed, you will have created a truly beautiful piece of mathematics, 
and the topic for our next section: A Riemann Surface.   



Notes . Doodles . Musings  74



75

Discussion

12.1 What's good about Riemann's two complex plane 
solution?

12.2 What's not so good about Riemann's two com-
plex plane solution?

12.3 Why do our paths jump in Figures 58 and 
59? 

Drill

Find all plot solutions to the the multifunction:

12.4 f -1(4)

12.5 f -1(2i)

12.6 f -1(-4)

12.7 f -1(-2i)

Exercises 12
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Critical Thinking

12.8 Let's try to get a better feel for what's happening in Figure 58. For each w value in the tables below, compute the 
corresponding z values. Each w value will yeild two z values, so choose the appropriate one based on which side of the plane 
(left of right) it's on. Plot all points, and connect consecutive points to form a path when possible. For points that end up on 
on the imaginary z (y) axis (these could be interpreted as left or right side), keep both solutions. For one cool point, make 
your left and right paths different colors. 

zleft w2

xleft yleft u v

4 0
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12.9 For each w value in the tables below, compute the corresponding z values. Each w value will yeild two z 
values, so choose the appropriate one based on which side of the plane (left of right) it's on. Plot all points, and 
connect consecutive points to form a path when possible. For points that end up on on the imaginary z (y) axis 
(these could be interpreted as left or right side), keep both solutions. For another cool point, make your left and 
right paths different colors. 
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12.10 Now Forwards! Map each z value in the table below to its corresponding w value. Note that each z value 
will map to either w1 or w2, with one exception: allow points along the imagary z (y) axis to map to both w1 and 
w2 - this is a small hack (don't tell your mathematician friends) to make your graph easier to understand. Plot all 
points, and connect consecutive points to form a path when possible. 

z w1 w2

x y u v u v
2 0
1 2
0 2
-2 1
-2 0
-1 -2
0 -1
1 -1
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Challenge

12.11 In Figure 58, our first discontinuity on 
z occurs when we first cross the negative real 
axis on w. Why does this happen at this specific 
location? Is this the result of how our function 
behaves, or of a choice we made?



80

This is a Riemann Surface.
It’s going to help us think in four dimensions.
We made it by cutting our planes at the discontinuities 

in our paths, and taping them together in a way that made 
our paths from one plane to the other continuous.

Riemann’s big insight here was that the domain, the 
input values of our multifunction, should not be a flat, two 
dimensional plane. Our domain should instead be this – 
a curved surface1 living in higher dimensional space. A 
Riemann surface. 

What’s incredible here is what the geometry2 of our 
Riemann surface is going to allow us to do. Using our 
Riemann surface as the input space of our multifunction, 
we can fix literally all the problems we’ve encountered thus 
far: our function will one to one, continuous, and our Rie-
mann surface will even help us elegantly explain the weird 
loop behavior we saw in part eleven. 

Let’s see how.
Riemann envisioned these surfaces as sheets covering 

the input plane, w.3 Our Riemann surface is constructed 
from two copies of the complex plane, and the idea here 
is that each input value on w lies directly below its corre-
sponding points on each layer of our Riemann surface. 

If we follow a line straight up from the value 2i on our 
w-plane, we find two points that correspond to w equals 2i. 
Our Riemann surface fixes our one-to-one problem just as 
our 2-complex plane solution did – each of our two solu-
tions on z corresponds to its very own copy of the w-plane, 
these are called braches. 

So our Riemann surface makes our mapping one-
to-one, just as our two-complex plane approach did last 
time, but what about continuity? As we saw last time, a 
big problem with our two-complex plane solution is that it 
introduced discontinuities.  

We constructed our surface in such a way that our 
colored path was continuous, but we encounter a weird 
self-intersection along the negative real axis - our planes 
have to pass right through eachother. Let’s dig a little deep-
er. Remember the main idea here – using our Riemann 
surface as the input space, the domain, to our complex 
multifunction should give us clarity. So instead of drawing 
paths or shapes on our w-plane, we should really be draw-
ing on our Riemann surface.

Drawing on three-dimensional surfaces can be a little 
challenging, so we’ll make use of a tool that wasn’t invent-
ed until over a century after Riemann’s death – a computer!

Just as with our paper version, we’ll start with our 
w-plane lying flat on the ground, and place our Riemann 
surface directly above.

1   Manifold!
2   Topology, really. 
3   Or sphere!

Before we start drawing paths all over our surface, let’s 
make sure we know what we’re looking at. We’re trying 
to understand the complex function w = z2, or taken in 
the other direction, z equals  plus or minus the square 
root of w. The mapping between w and z is the same both 

Imaginary Numbers Are Real 
Part 13: Riemann Surfaces

Figure 61 | The Riemann Surface for Our Function                                       . We made 
this surface by printing the paths from Figure 60 on transparencies, cutting the 
planes at their discontinuities, and taping the paths together. 

Figure 62 | The Riemann Surface for Our Function                                       . We made 
this surface using the programming language Python and the plotting library 
Plotly. 
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directions. The visualization challenge here is that our 
mapping is four-dimensional, both z and w have real and 
imaginary parts – back in part 10 we called these x, y, u 
and v. 

What we’re seeing when we visualize our Riemann 
surface is a two-dimensional surface in three-dimen-
sional space. In this case, since we positioned our surface 
directly above the w-plane, two of our three dimensions 
correspond exactly to the real and imaginary parts of w, 
we called these u and v. Part of Riemann’s idea is that our 
third dimension should represent the z-value of our func-
tion. But as we know, z is complex number – it has both a 
real and imaginary part, so there’s no way to show both of 
these on a single axis.

What’s often done when visualizing these surfac-
es, and what we’re doing here, is to simply pick the real 
or imaginary part of z,1 and use this value as the third 
dimension, the height, of our surface. In Figure 63, we’re 
using x, the real part of z. 

Doing this has a nice visual result: each point on our 
Riemann surface lives in 3d space at a location corre-
sponding exactly to its u, v, and x values. So each point on 
our surface represents a single solution to our equation, 
and 3 of the 4 values needed to describe the solution are 
represented by the points’ location in 3D space. 

This is a nice result, but we must remember that this 
is not the whole picture. There’s another variable – the 
imaginary part of z, we called this y – that is not included 
in our visualization at all. 

This becomes important when trying to figure out if 
we’ve actually fixed our continuity problem. If we follow 
a path along a single branch of our Riemann surface, we 

1   Or magnitude or angle!

run into a bit of a problem when we hit our self-inter-
section, after all, should we stay on the same w-plane, or 
hope to the other one?

To answer this question let’s try to figure out why our 
surface self-intersects in the first place. This intersection 
happens along the negative real axis on our w-plane. Let’s 
consider a point on this axis: w =-1. Plugging in -1 for w 
yields two solutions: 

Our two solutions, z = +i, and -i are clearly different, 
but have the same real part, zero. Since we’re only visu-
alizing the real part of z – we have no way of seeing that 
these are in fact different points.

This is the danger of visualizing high dimensional 
mathematical concepts. What we’re really looking at here 

Figure 63 | Each point on our surface is a solution to our function. The point 
w=-2i, when plugged into our multifunction                                       yields two 
solutions, z=-1+i and z=1-i. These solutions show up as the points (u,v,x,y) 
= (0,-2,-1,1) and (0,-2,1,-1) on our Riemann Surface. 3 of our 4 coordinates 
show up as our points location in 3D space. 

w

w1

w2

Our w planes intersect here.

Figure 64 | What to do about the intersection of our w planes? We would like to 
think that we've fixed our continuity problem, but as we follow a path around 
our surface, what should we do when we hit this point of intersection? Should 
we stay on the same plane or hop to the other one? How do we even figure this 
out?

Figure 65 | Tricky Tricky. Along our self-intersection line, our two distinct 
solutions are collapsed into one becuase we don't have enough dimensions to 
show that out two points are, in fact, different.
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is a projection, a shadow, of our full four dimensional 
surface. 

So our line of self-intersection actually…isn’t. This is 
exactly like the two-dimensional shadows of 3-dimen-
sional objects giving the appearance that the objects 
intersect.

There are inherent limitations to the types of struc-
tures we can visualize in the 3D space we inhabit. 

However, there are some clever ways to get a feel for 
what’s happening in our missing fourth dimension. One 
approach is to expand our visualization to include anoth-
er dimensions of human perception,1 such as color.

We’ll color each point on our surface with a color that 
corresponds to the value of the 4th dimension of our func-
tion – in this case the imaginary part of z, y. To do this we 
need to decide which colors to match which numbers to – 
this is called a colormap.

Our colors now give us a nice idea of what’s happening 
in our missing 4th dimension, y. If we look at our line of 
self-intersection now, it’s much more clear that since our 
colors2 are different, our four-dimensional function actu-
ally doesn’t intersect itself. The apparent self-intersection 
is just an artifact of our visualization technique. 

So as we follow paths on our Riemann surface, the 
right thing to do with these self-intersection lines is to ig-
nore them. If we now follow our path around our surface, 
we see that it’s perfectly continuous, even at our weird 
self-intersection line. 

Excellent.
So that’s great, we have continuity – but there’s still 

1   Sound?! 
2   Any y values

one missing piece of the puzzle – what about the weird 
behavior we saw in Part 11 where some paths ended up in 
new locations and others, didn’t?

5:55-7:38

Figure 66 | Shadows are not the whole picture. The shadows of the pens 
intresect, but the pens don't! Our Riemann surface is just a shadow of our full 
4-dimensional function, complete with false intersections.

y

Figure 67 | One way to visualize all 4 dimensions. If we color our suface according 
to our missing value, y, we can get a better feel for what all 4 variables are 
doing at once. Since our planes are different colors at our line of intersection, 
this means that our surface actually doesn't self-intersect! The apparent self-
intersection is a result of visualizing a 4D object in 3D space. 
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Figure 68 | Another Pair of Suspicious Paths. One more look at the suspicious 
types of paths we first saw back in Part 11. Out blue paths return to where they 
started, but our green paths don't! Hmmm...I wonder if there's a better way to 
think about this...
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Let’s recreate these suspicious paths, this time using 
our Riemann Surface to help us out.1 To keep our surface 
from getting too crowded, we’ll choose just one of our two 
paths to visualize first. 

We’ll draw the same exact paths on w and see how 
they show up on our Riemann surface as they are mapped 
to the z-plane. 

So why does our green path start out in one location 
on our z-plane and end up in another?

Simply because our green path leads us to the other 
layer of our surface. 

From the perspective of our w-plane, it appears that’s 
we’ve returned exactly to our starting point, but we actu-
ally, haven’t. The w-plane is just a projection, a shadow. 
In reality, our path has led us to a completely different 
branch of our function, with different z-values. 2

Our Riemann surface allows us to clearly see that 
some paths on w lead the other branch, and some don’t.
More specifically, paths that go around the central point 
on our Riemann surface end up on new branches. This 
point is called a branch point – branch points occur wher-
ever the two branches of our function have the same exact 
value – and can tell us a great deal about how our complex 
function behaves. For us, this is the point w = 0. 

So our Riemann surface not only fixes the troubles we 
ran into earlier, but beautifully explains the strange path 

1   But this time using a thicker marker to make things more clear. 
2   The solution has undergone a monodromy along its path. 

behavior we saw! And this is just the beginning, Riemann 
surfaces are huge part of modern mathematics, and there’s 
way more to say than we have time for here. 

Alright, we’re finally ready to answer the question – 
what the heck was happing way back in Figure 2? 

Our entire discussion has centered around a single 
function, f(z)=z2+1. And so far, we’ve looked at one way 
to visualize the Riemann surface for our function by plot-
ting 3 of our 4 variables in 3D space. 

The two-dimensional plot we started our discussion 
with way back in Figure 1, the one most of us see in math 
class, only shows 2 of our 4 variables: the real parts of z 
and w. The surface in Figure 2 is the result of including 
one more variable: the imaginary part of z as the vertical 

Figure 69 | Riemann Surfaces are Cool AF. Using our Riemann Surface, we can see exactly why our blue path returns to where it started, but our green path doesn't!

a b

c d

Figure 2 | Graph of f(x) = x2+1 where x includes imaginary numbers. Panels 
a-d show "pulling" the function out of the page.
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dimension of our visualization.
When we first saw this surface in part one, people 

asked a very good question - if, according to the funda-
mental theorem of algebra, our function is supposed to 
have exactly 2 roots, why does our surface appear to equal 
zero at way more than two locations?

This apparent contradiction has everything to do 
with the shortcomings of living in 3 dimensional space 
we’ve been discussing. When we visualize 4-dimensional 
functions in 3-dimensional space, we must remember that 
what we’re really seeing is a projection, a shadow of the 
functions’ full 4-dimensional form. 

Let’s have a closer look at our surface from Figure 2. In 
our opening shot, half of our surface was hidden behind 
our paper and the colors we used were chosen somewhat 
arbitrarily to roughly correspond to the surface height.

Now that we know a bit more about functions of 
complex variables, let’s change the color of our surface to 
correspond to the fourth variable we were forced to leave 
out of our 3-dimensional visualization– v. 

Now that we have some idea of what all four variables 
are doing, let’s look for the two roots predicted by Gauss. 
Remember, roots are where the output of our function 
equals zero. For this to be the case, both the real and lat-
eral parts of our output variable w, u and v, must be zero. 
Seeing where u equals zero isn’t too bad – this is where 
our surface intersects the z-plane.

Now, where does v, the imaginary part of our output 
variable w, equal zero? If we look at our colormap, this 
should be where our surface is green. It’s difficult to see 
exactly which shade of green corresponds to zero,1 so let’s 
add an orange line to our surface where v equals exactly 
zero. 

Now if we look closely, we see that both the real and 
imaginary parts of w equal zero at exactly two points: 
i and -i on our complex z plane, exactly as our algebra 
predicted in Figure 41! 

We have finally found our missing roots. So our friend 
Gauss was right all along. Our function does have exactly 
2 roots. 

Of course, finding these roots took some effort! We 
had to journey deep into mathematics, and ask ourselves 
what a number really is.2 This led us to the strange, but 
necessary conclusion that numbers we should really be us-
ing in algebra are the two-dimensional complex numbers. 
This result dragged us down deeper into the four-dimen-
sional world of complex functions and Riemann Sur-
faces. When we finally emerged, we saw that the algebra 
many of us learn in school is only a shadow of an elegant, 
powerful, and higher dimensional mathematics that has 
everything to do with the numbers that have been given 
the terrible name, imaginary. Thanks for reading.3

1   A limitation of using color instead of a spatial dimension!.
2   Man this feels like a movie montage.
3  You Rock!

10:37-end

Figure 70 | A Closer Look at Our Surface in Figure 2. In Figure 2, half of our 
surface is hidden beneath the paper. 

v

z-plane

Figure 71 | Colors! To get a better feel for what's happening in all 4 dimensions, 
here we've colored our surface to correspond to hour missing variable, v. 

v=0

u=0

v

ZEROS!!!!
z=i, -i

z-plane

Figure 72 | Finally. The zeros we've been looking for since part 1! We've rotated 
around our surface from Figure 71 to get a better view. Our zeros occur where 
the real and imaginary parts of w, u and v, equal zero. This happens where our 
orange a blue lines intersect! 
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Discussion

13.1 How did our Riemann Surface help us under-
stand our wierd loop behavior?

13.2 Why was our line of self-intesection actually not?

Critical Thinking

13.3 We've shown 2 different surfaces in 3D 
space that represent our function f(z)=z2 
(Figure 62 and Figure 70). Are there other 
possible surfaces? If so, how many?

13.4 What kind of paths could we draw on our Rie-
mann Surface that would return us exactly to where 
we started?

13.5 What would the Riemann Surface for  
look like?

Challenge

13.6 For 1,000,000 cool points, construct a 
Riemann Surface (in code or paper) for a func-
tion other than f(z)=z2, and tweet a picture to          
@welchlabs.

Exercises 13
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Stephen Welch is a huge jerk. Just look at that smug 
face. He thinks that, just like him, you should not 
only be good at math, but enjoy doing it. He has the 
audacity to think that math and science are perhaps 
the most beautiful discoveries we as humans have 
made, and they should be savored accordingly. 
Needless to say, we must stop this monster. Help show 
Stephen what a big jerk he is by watching and liking 
his You Tube videos and buying his books. That will 
show him.1 

1  Stupid Jerk. 

About the Author

Figure -1 | The jerk who wrote this workbook. When he's not making videos, 
Stephen Welch spends his enormous You Tube profits on his professional 
Elephant Polo team. 
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